【题目】已知函数![]()
(1)当
时,证明函数
在区间
上有三个极值点;
(2)若
对于
恒成立,求a的取值范围.
【答案】(1)证明见解析;(2)![]()
【解析】
(1)求导
,令
,用导数法得到其单调性,再结合零点存在定理得到
在区间
有三个零点,然后用极值点的定义求解.
(2)求导
,令
,则
,由(1)知
,再分
和
两种情况讨论求解.
(1)当
时,
,
则
.
令
,
当
时,
,当
时,
,
故
在区间
上单调递减,在区间
上单调递增,
所以
.
又
,故
在区间
及区间
内各有唯一零点.
由此可知,
在区间
有三个零点:
,
当
时,
,当
时,
,当
时,
,当
时,
,
从而知
在
上有三个极值点
.
(2)
,
令
,
则
,由(1)的证明过程知
.
当
时,即
时,有
时,
;
时,有
,
故
在区间
上单调递减,在区间
上单调递增,
所以
,从而知
时,恒有
.
当
时,
.但
,
由
在
上单调递减,故
在
上有唯一零点
,
从而知
在
上有唯一零点
,且当
时,
,当
时,
,
所以
在
上单调递减,在
上单调递增,故
,
矛盾,舍去.
综上,所求a的取值范围是
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
,四点
,
,
,
中恰有三个点在椭圆C上,左、右焦点分别为F1、F2.
(1)求椭圆C的方程;
(2)过左焦点F1且不平行坐标轴的直线l交椭圆于P、Q两点,若PQ的中点为N,O为原点,直线ON交直线x=﹣3于点M,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),以原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的方程为
,定点
,点
是曲线
上的动点,
为
的中点.
(1)求点
的轨迹
的直角坐标方程;
(2)已知直线
与
轴的交点为
,与曲线
的交点为
,若
的中点为
,求
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
年上半年,随着新冠肺炎疫情在全球蔓延,全球超过
个国家或地区宣布进人紧急状态,部分国家或地区直接宣布“封国”或“封城”,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为
年第一季度企业成立年限与倒闭分布情况统计表:
企业成立年份 | 2019 | 2018 | 2017 | 2016 | 2015 |
企业成立年限 | 1 | 2 | 3 | 4 | 5 |
倒闭企业数量(万家) | 5.23 | 4.70 | 3.72 | 3.12 | 2.42 |
倒闭企业所占比例 | 21.8% | 19.6% | 15.5% | 13.0% | 10.1% |
根据上表,给出两种回归模型:
模型①:建立曲线型回归模型
,求得回归方程为
;
模型②:建立线性回归模型
.
(1)根据所给的统计量,求模型②中
关于
的回归方程;
(2)根据下列表格中的数据,比较两种模型的相关指数
,并选择拟合精度更高、更可靠的模型,预测
年成立的企业中倒闭企业所占比例(结果保留整数).
回归模型 | 模型① | 模型② |
回归方程 |
|
|
|
|
参考公式:
,
;
.
参考数据:
,
,
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知6名某疾病病毒密切接触者中有1名感染病毒,其余5名健康,需要通过化验血液来确定感染者.血液化验结果呈阳性的即为感染者,呈阴性即为健康.
(1)若从这6名密切接触者中随机抽取3名,求抽到感染者的概率;
(2)血液化验确定感染者的方法有:①逐一化验;②分组混合化验:先将血液分成若干组,对组内血液混合化验,若化验结果呈阴性,则该组血液不含病毒;若化验结果呈阳性,则对该组的备份血液逐一化验,直至确定感染者.
(i)采取逐一化验,求所需检验次数
的数学期望;
(ii)采取平均分组混合化验(每组血液份数相同),依据所需化验总次数的期望,选择合理的平均分组方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程和
的直角坐标方程;
(2)已知曲线
的极坐标方程为
,点
是曲线
与
的交点,点
是曲线
与
的交点,
、
均异于原点
,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)利用“五点法”画出函数
在长度为一个周期的闭区间的简图.
列表:
| |||||
x | |||||
y |
作图:
![]()
(2)并说明该函数图象可由
的图象经过怎么变换得到的.
(3)求函数
图象的对称轴方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com