精英家教网 > 高中数学 > 题目详情

【题目】设集合A={1,2,…,2016}.对于A的任一个1008元子集X,若存在x、y∈X,满足x<y,x|y,则称X为“好集”.求最大的正整数a(a∈A),使得任一个含a1008元子集皆为好集。

【答案】671

【解析】

因为任何正整数n可以表为(a∈N,t为正奇数)的形式,所以,集合A可划分为以下1008个子集:

,

其中,j=1,2,…,1008.对于集合A的任一个1008元子集X,只要集合X中含有某一个子集A中的至少两个元素,则.此时,X为好集.

下面证明:正整数a的最大值为671.

当a=671时,对于集合A的任一个1008元子集X,若集合X中含有某个子集中的至少两个元素,则X为好集;如果中的1008个集合,每个集合中恰有一个元素在集合X中,那么, 也有一个元素在集合X中,但为单元素集,于是,2013∈X.而a|2013(2013=671×3=3a),这表明,X仍为好集.因此,a=671符合要求.

当a≥672时,存在含a的集合X为好集.分两种情形.

(1)若a≥1009,取1008元集,

因为中任两个不同元素x<y,均有,所以, 不为好集,这种不符合要求.

(2)若672≤a≤1008,记,

.,且.

若集合X中存在x<y,使得x|y,且,则.

,如果,那么,只有或3x.

此时,y的取值只能是.

注意到,1344=2(672+0),2016=2(672+336).

这表明,两个数已被挖去,不在集合X中当x>672,假若x|y,只有y=2x,这种数y也已被挖去,即

因此,X不为好集,这种a也不符合要求.

综上,a的最大值为671.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】8张卡片分别标有数字12345678,从中取出6张卡片排成32列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,椭圆的极坐标方程为,其左焦点在直线上.

(1)若直线与椭圆交于两点,求的值;

(2)求椭圆的内接矩形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·江苏高考)如图,在三棱锥ABCD中,ABADBCBD,平面ABD⊥平面BCD,点EF(EAD不重合)分别在棱ADBD上,且EFAD.

求证:(1)EF∥平面ABC

(2)ADAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的方格表中,每个格被染上红、蓝、黄、绿四种颜色之一,若每个的子方格表包含每种颜色的格均为一,称此染法为“均衡”的.则所有不同的均衡的染法有__________种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别是,离心率,过点的直线交椭圆两点, 的周长为16.

(1)求椭圆的方程;

(2)已知为原点,圆 )与椭圆交于两点,点为椭圆上一动点,若直线轴分别交于两点,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数在区间上的图像如图所示,将该函数图像上各点的横坐标缩短到原来的一半(纵坐标不变,再向右平移个单位长度后,所得到的图像关于直线对称,则的最小值为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足时按计算)需再收5.公司从承揽过的包裹中,随机抽取100件,其重量统计如下:

包裹重量(单位:

包裹件数

43

30

15

8

4

公司又随机抽取了60天的揽件数,得到频数分布表如下:

揽件数

天数

6

6

30

12

6

以记录的60天的揽件数的频率作为各揽件数发生的概率

1)计算该公司3天中恰有2天揽件数在的概率;

2)估计该公司对每件包裹收取的快递费的平均值;

3)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用做其他费用,目前前台有工作人员3人,每人每天揽件不超过150件,每人每天工资100元,公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润有利?

(注:同一组中的揽件数以这组数据所在区间中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知两个城镇相距20公里,设中点,在的中垂线上有一高铁站的距离为10公里.为方便居民出行,在线段上任取一点(点不重合)建设交通枢纽,从高铁站铺设快速路到处,再铺设快速路分别到两处.因地质条件等各种因素,其中快速路造价为3百万元/公里,快速路造价为2百万元/公里,快速路造价为4百万元/公里, ,总造价为(单位:百万元).

1)求关于的函数关系式,并指出函数的定义域;

2)求总造价的最小值,并求出此时的值.

查看答案和解析>>

同步练习册答案