选修4-4:坐标系与参数方程已知直线l:
(t为参数)恒经过椭圆C:
(?为参数)的右焦点F.
(Ⅰ)求m的值;
(Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|·|FB|的最大值与最小值.
(Ⅰ)4;(Ⅱ)最大值
,最小值![]()
【解析】
试题分析:(Ⅰ)将椭圆的参数方程化为普通方程得
,易求其右焦点为
,因为直线直线
经过点
;(Ⅱ)在标准直线参数方程中,
的几何意义是
表示直线上的点到定点
的距离,故将直线参数方程带入椭圆普通方程得
,则
,利用韦达定理用参数将目标函数用
表示,转化为三角函数的最值问题处理.
试题解析:(Ⅰ)椭圆的参数方程化为普通方程,得
,
则点
的坐标为
.
直线
经过点
. (4分)
(Ⅱ)将直线
的参数方程代入椭圆
的普通方程,并整理得:
.
设点
在直线参数方程中对应的参数分别为
,则
=
(8分)
当
时,
取最大值
;
当
时,
取最小值
(10分)
考点:1、直线和椭圆的参数方程;2、直线参数方程中参数的几何意义.
科目:高中数学 来源:2015届河南省顶级名校高三入学定位考试文科数学试卷(解析版) 题型:填空题
设O是
的三边中垂线的交点,
分别为角
对应的边,已知
,则
的范围是___________.
查看答案和解析>>
科目:高中数学 来源:2015届河南省开封市高三上学期定位模拟考试理科数学试卷(解析版) 题型:选择题
设
,若函数
为单调递增函数,且对任意实数
,都有
(
是自然对数的底数),则
( )
A.1 B.
C.3 D.![]()
查看答案和解析>>
科目:高中数学 来源:2015届河南省开封市高三上学期定位模拟考试文科数学试卷(解析版) 题型:选择题
三棱柱
侧棱与底面垂直,体积为
,高为
,底面是正三角形,若
是
中心,则
与平面
所成的角大小是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2015届河南省开封市高三上学期定位模拟考试文科数学试卷(解析版) 题型:选择题
对一个容量为
的总体抽取容量为
的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为
、
、
,则( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2015届河南省名校高三上学期期中理科数学试卷(解析版) 题型:解答题
设函数![]()
(1)求
的最大值,并写出使
取最大值时x的集合;
(2)已知
中,角A、B、C的对边分别为a、b、c,若
,求a的最小值.
查看答案和解析>>
科目:高中数学 来源:2015届河南省名校高三上学期期中理科数学试卷(解析版) 题型:选择题
如图,把周长为1的圆的圆心C放在y轴上,顶点A(0,1),一动点M从A开始逆时针绕圆运动一周,记弧AM=x,直线AM与x轴交于点N(t,0),则函数
的图像大致为( )
![]()
![]()
查看答案和解析>>
科目:高中数学 来源:2015届河南省名校高三上学期期中文科数学试卷(解析版) 题型:选择题
设
是定义在R上的偶函数,且对于
恒有
,已知当
时,
则
(1)
的周期是2;
(2)
在(1,2)上递减,在(2,3)上递增;
(3)
的最大值是1,最小值是0;
(4)当
时,![]()
其中正确的命题的序号是 .
查看答案和解析>>
科目:高中数学 来源:2015届河南省八校高三上学期第一次联考文科数学试卷(解析版) 题型:解答题
已知圆C的极坐标方程为
,直线l的参数方程为
(t为常数,t∈R)
(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)求直线l与圆C相交的弦长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com