精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3+
1
2
ax2+bx
,a,b∈R,f'(x)是函数f(x)的导函数.
(I)若b=a-1,求函数f(x)的单调递减区间;
(II)若-1≤a≤1,-1≤b≤1,求方程f'(x)=0有实数根的概率.
分析:(I)求导数,令导数小于零,解此不等式即可求得函数y=f(x)的单调递减区间.
(II)此小题是一个几何概率模型,如设方程f'(x)=0有实根为事件B.先求出区域D={(a,b)|-1≤a≤1,-1≤b≤1}的面积,再求出方程有实根对应区域为d与区域D的公共部分的面积,再有公式P(B)=
Sd
SD
求出概率.
解答:解:(I)由f(x)=
1
3
x3+
1
2
ax2+bx
,b=a-1得:
f'(x)=x2+ax+b=x2+ax+a-1=(x+1)(x+a-1)…(2分)
令f'(x)=0得x1=-1;x2=1-a…(3分)
①若-1<1-a,即a<2时,令 f'(x)<0解得-1<x<1-a
此时函数f(x)的减区间是(-1,1-a)…(5分)
②若-1>1-a,即a>2时,令 f'(x)<0解得1-a<x<-1,此时函数f(x)的减区间是(1-a,-1)…(7分)
③若-1=1-a,即a=2时,f'(x)=(x+1)2≥0,函数f(x)在R上单调递增,没有减区间…(8分)
(II)方程f'(x)=0,即x2+ax+b=0有实数根,则△≥0,即a2≥4b,…(10分)
若-1≤a≤1,-1≤b≤1,
方程f'(x)=0有实数根的条件是
-1≤a≤1
-1≤b≤1
a2≥4b
(※)…(11分)
满足不等式组的区域如图所示,条件(※)对应的图形区域的面积为:
S1=
-1
1
[
a2
4
-(-1)]da=
-1
1
(
a2
4
+1)da
=(
a3
12
+a)
|
1
-1
=
13
6
…(13分)
而条件-1≤a≤1,-1≤b≤1的对应的面积为S=4,
所以,方程f'(x)=0有实数根的概率为P=
S1
S
=
13
24
…(14分)
点评:此题是个基础题.考查学生利用导数研究函数的单调性、等可能事件的概率,考查计算能力和数形结合思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案