精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.
分析:(I)正方形ABCD中,可得BD⊥AC,由D1D⊥平面ABCD证出D1D⊥AC,再利用线面垂直的判定定理,即可证出AC⊥平面D1DB.
(II)设O为底面ABCD的对角线的交点,连结OE,可得OE是△D1DB的中位线,得OE∥BD1.利用线面平行的判定定理即可证出BD1∥平面AEC.
解答:解:(Ⅰ)∵四边形ABCD是正方形,∴BD⊥AC.
又∵D1D⊥平面ABCD,AC?面ABCD,
∴D1D⊥AC,
∵BD∩D1D=D,∴AC⊥平面D1DB.
(Ⅱ)设O为底面ABCD的对角线的交点,连结OE
∵O、E分别是BD、DD1的中点,
∴OE是△D1DB的中位线,
∴OE∥BD1
∵BD1?平面AEC,DE?平面AEC,
∴BD1∥平面AEC.
点评:本题在正方体中证明线面垂直和线面平行,着重考查了正方体的性质和空间线面垂直、平行位置关系的判定与证明等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案