精英家教网 > 高中数学 > 题目详情
19.从10名学生中选3名组成一组,则甲、乙至少有1人入选,而丙没有入选的不同选法种数为(  )
A.42B.56C.49D.28

分析 根据题意,分2种情况讨论:①、甲乙中只有1人入选,②、甲乙两人都入选,分别求出每一种情况的选法数目,由加法原理计算可得答案.

解答 解:根据题意,分2种情况讨论:
①、甲乙中只有1人入选,
先在甲乙中任选1个,再在除甲乙丙之外的7人中任选2个,则有C21C72=42种选法;
②、甲乙两人都入选,在除甲乙丙之外的7人中任选1个即可,有C71=7种选法;
则符合题意的选法有42+7=49种;
故选:C.

点评 本题考查排列、组合的综合应用,注意优先分析受到限制的元素.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2.求f(x)的单调区间和极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知某四棱锥的三视图(单位:cm)如图所示,则该几何体的体积是$\frac{8\sqrt{3}}{3}$,其全面积是16+$\sqrt{3}$+$\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA-sinB)=(c-b)sinC,则A的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线x=1的倾斜角和斜率分别是(  )
A.45°,1B.135°,-1C.90°,不存在D.180°,不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.复数z=(m2+m-6)+(m2-3m+2)i,其中m∈R,则当m为何值时,
(1)z是实数?
(2)z是纯虚数?
(3)如果复数z在复平面上对应的点位于第二象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC内角A,B,C的对边分别是a,b,c,若b=c,a2=2b2(1+sinA),则A=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sinωx+$\sqrt{3}cosωx({ω>0})$,当f(x1)=f(x2)=2时,|x1-x2|的最小值为2,给出下列结论,其中所有正确结论的个数为(  )
①f(0)=$\frac{π}{3}$;  
②当x∈(0,1)时,函数f(x)的最大值为2;  
③函数$f({x+\frac{1}{6}})$的图象关于y轴对称;  
④函数f(x)在(-1,0)上是增函数.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对于实数m,n,定义一种运算:$m*n=\left\{{\begin{array}{l}{m,m≥n}\\{n,m<n}\end{array}}\right.$,已知函数f(x)=a*ax,其中0<a<1,若f(t-1)>f(4t),则实数t的取值范围是(-$\frac{1}{3}$,2].

查看答案和解析>>

同步练习册答案