精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2.求f(x)的单调区间和极大值.

分析 由条件f(1)=2,f′(1)=0求得a、b,再利用导数求出单调区间,从而求解.

解答 解.由奇函数定义,有f(-x)=-f(x),x∈R.即-ax3-cx+d=-ax3-cx-d,∴d=0因此,f(x)=ax3+cx,
 f′(x)=3ax2+c
由条件f(1)=2为f(x)的极值,必有f′(1)=0
故  $\left\{\begin{array}{l}{a+c=-2}\\{3a+c=0}\end{array}\right.$,解得 a=1,c=-3
因此f(x)=x3-3x,f′(x)=3x2-3=3(x-1)(x+1)
当x∈(-∞,-1)时,f′(x)>0,故f(x)在单调区间(-∞,-1)上是增函数.
当x∈(-1,1)时,f′(x)<0,故f(x)在单调区间(-1,1)上是减函数.
当x∈(1,+∞)时,f′(x)>0,故f(x)在单调区间∈(1,+∞)上是增函数.
所以,f(x)的极大值为f(-1)=2.

点评 本题考查了导数的应用,利用导数求函数的单调区间,最值,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据(x1,y1),(x2,y2),(x3,y3),(x4,y4)(x5,y5).根据收集到的数据可知$\overrightarrow{x}$=20,由最小二乘法求得回归直线方程为$\stackrel{∧}{y}$=0.6x+48,则$\sum_{i=1}^5{y_i}$=(  )
A.60B.120C.150D.300

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.复数z=(1+i)m2+(3-10i)m-(4-9i),(其中 i为虚数单位,m∈R),
(1)当m=0时,求复数z的模;    
(2)当实数m为何值时复数z为纯虚数;
(3)当实数m为何值时复数z在复平面内对应的点在第二象限?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某商场在一部向下运行的手扶电梯终点的正上方竖直悬挂一幅广告画.如图,该电梯的高AB为4米,它所占水平地面的长AC为8米.该广告画最高点E到地面的距离为10.5米.最低点D到地面的距离6.5米.假设某人的眼睛到脚底的距离MN为1.5米,他竖直站在此电梯上观看DE的视角为θ.
(1)设此人到直线EC的距离为x米,试用x表示点M到地面的距离;
(2)此人到直线EC的距离为多少米,视角θ最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有(  )
A.2个或3个B.1个或3个C.1个或4个D.4个或3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=lnx,g(x)=$\frac{1}{2}$ax2+bx(a≠0),h(x)=f(x)-g(x),f(x)=lnx,g(x)=$\frac{1}{2}$ax2+bx(a≠0),h(x)=f(x)-g(x),
(1)若a=3,b=2,求h(x)的极值点;
(2)若b=2且h(x)存在单调递减区间,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,D、E、F分别是△ABC的边AB、BC、CA的中点,则下列等式中错误的是(  )
A.$\overrightarrow{FD}$+$\overrightarrow{DA}$+$\overrightarrow{DE}$=0B.$\overrightarrow{AD}$+$\overrightarrow{BE}$+$\overrightarrow{CF}$=0C.$\overrightarrow{FD}$+$\overrightarrow{DE}$+$\overrightarrow{AD}$=$\overrightarrow{AB}$D.$\overrightarrow{AD}$+$\overrightarrow{EC}$+$\overrightarrow{FD}$=$\overrightarrow{BD}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{{\sqrt{3}}}{4}sin2x+\frac{1}{2}{cos^2}$x.
(1)求函数f(x)的最大值,及取到最大值的x集合;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,若f(A)=$\frac{1}{2}$,a=1,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从10名学生中选3名组成一组,则甲、乙至少有1人入选,而丙没有入选的不同选法种数为(  )
A.42B.56C.49D.28

查看答案和解析>>

同步练习册答案