精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\frac{{\sqrt{3}}}{4}sin2x+\frac{1}{2}{cos^2}$x.
(1)求函数f(x)的最大值,及取到最大值的x集合;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,若f(A)=$\frac{1}{2}$,a=1,求△ABC周长的最大值.

分析 (1)利用两角和与差的三角函数化简函数的解析式,然后求解函数的最值.
(2)通过f(A)=$\frac{1}{2}$,求出A,结合a=1,利用余弦定理,求出b+c的范围,然后求解最值.

解答 解:(1)$\frac{{\sqrt{3}}}{4}sin2x+\frac{1}{2}×\frac{1}{2}({1+cos2x})=\frac{{\sqrt{3}}}{4}sin2x+\frac{1}{4}cos2x+\frac{1}{4}$=$\frac{1}{2}sin({2x+\frac{π}{6}})+\frac{1}{4}$,
由$2x+\frac{π}{6}=2kπ+\frac{π}{2}$,得$x=kπ+\frac{π}{6},k∈$Z,
当$x=kπ+\frac{π}{6}$时,f(x)有最大值,即f(x)取最大值时集合为$\left\{{x|x=kπ+\frac{π}{6},k∈}\right.$Z}.
(2)$f(A)=\frac{1}{2}sin({2A+\frac{π}{6}})+\frac{1}{4}=\frac{1}{2},sin({2A+\frac{π}{6}})=\frac{1}{2}$,
$2A+\frac{π}{6}=\frac{5}{6}π,A=\frac{π}{3}$,
${1^2}={a^2}={b^2}+{c^2}-2bccos\frac{π}{3}={b^2}+{c^2}-bc$=${({b+c})^2}-3bc≥\frac{{{{({b+c})}^2}}}{4}$,
∴(b+c)≤2,a+b+c≤3,即△ABC周长的最大值3.

点评 本题考查余弦定理的应用、两角和与差的三角函数,基本不等式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.以圆C1:x2+y2+4x+1=0与圆C2:x2+y2+2x+2y+1=0的公共弦为直径的圆的方程为(  )
A.(x-1)2+(y-1)2=1B.(x-$\frac{3}{5}$)2+(y-$\frac{3}{5}$)2=2C.(x+1)2+(y+1)2=1D.(x+$\frac{3}{5}$)2+(y+$\frac{3}{5}$)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2.求f(x)的单调区间和极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=2sin2x的最小正周期为(  )
A.B.C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中,假命题是(  )
A.?x∈R,2017x-2>0B.?x0∈R,tanx0=22
C.?x0∈R,lgx0<0D.?x∈R,(x-100)2016>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知cos(π-α)=$\frac{4}{5}$,且α∈($\frac{π}{2}$,π),求下列各式的值.
(1)tan(α-$\frac{π}{4}$);
(2)$\frac{1}{sin(\frac{π}{2}-2α)}$+tan 2α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知某四棱锥的三视图(单位:cm)如图所示,则该几何体的体积是$\frac{8\sqrt{3}}{3}$,其全面积是16+$\sqrt{3}$+$\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA-sinB)=(c-b)sinC,则A的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sinωx+$\sqrt{3}cosωx({ω>0})$,当f(x1)=f(x2)=2时,|x1-x2|的最小值为2,给出下列结论,其中所有正确结论的个数为(  )
①f(0)=$\frac{π}{3}$;  
②当x∈(0,1)时,函数f(x)的最大值为2;  
③函数$f({x+\frac{1}{6}})$的图象关于y轴对称;  
④函数f(x)在(-1,0)上是增函数.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案