【题目】疫情后,为了支持企业复工复产,某地政府决定向当地企业发放补助款,其中对纳税额在
万元至
万元(包括
万元和
万元)的小微企业做统一方案.方案要求同时具备下列两个条件:①补助款
(万元)随企业原纳税额
(万元)的增加而增加;②补助款不低于原纳税额
(万元)的
.经测算政府决定采用函数模型
(其中
为参数)作为补助款发放方案.
(1)判断使用参数
是否满足条件,并说明理由;
(2)求同时满足条件①、②的参数
的取值范围.
科目:高中数学 来源: 题型:
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数
与烧开一壶水所用时间
的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).
![]()
|
|
|
|
|
|
|
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中
,
.
(1)根据散点图判断,
与
哪一个更适宜作烧开一壶水时间
关于开关旋钮旋转的弧度数
的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于
的回归方程;
(3)若旋转的弧度数
与单位时间内煤气输出量
成正比,那么
为多少时烧开一壶水最省煤气?
附:对于一组数据![]()
![]()
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求函数
的图象在
(
为自然对数的底数)处的切线方程;
(2)若对任意的
,均有
,则称
为
在区间
上的下界函数,
为
在区间
上的上界函数.
①若
,求证:
为
在
上的上界函数;
②若
,
为
在
上的下界函数,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于圆周率
,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验,受其启发,我们也可以通过设计下面的实验来估计
的值:先请240名同学,每人随机写下两个都小于1的正实数x,y组成的实数对
,再统计两数能与1构成钝角三角形三边的数对
的个数m;最后再根据计数m来估计π的值.假设统计结果是
,那么可以估计
的近似值为____________.(用分数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,满足
,则( )
A.函数
有2个极小值点和1个极大值点
B.函数
有2个极大值点和1个极小值点
C.函数
有可能只有一个零点
D.有且只有一个实数
,使得函数
有两个零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高三男生的体能达标情况,抽调了120名男生进行立定跳远测试,根据统计数据得到如下的频率分布直方图.若立定跳远成绩落在区间
的左侧,则认为该学生属“体能不达标的学生,其中
分别为样本平均数和样本标准差,计算可得
(同一组中的数据用该组区间的中点值作代表).
![]()
(1)若该校高三某男生的跳远距离为
,试判断该男生是否属于“体能不达标”的学生?
(2)该校利用分层抽样的方法从样本区间
中共抽出5人,再从中选出两人进行某体能训练,求选出的两人中恰有一人跳远距离在
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线E:
(
)与圆O:
相交于A,B两点,且
.过劣弧
上的动点
作圆O的切线交抛物线E于C,D两点,分别以C,D为切点作抛物线E的切线
,
,相交于点M.
![]()
(1)求抛物线E的方程;
(2)求点M到直线
距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项的和为
,记
.
(1)若
是首项为
,公差为
的等差数列,其中
,
均为正数.
①当
,
,
成等差数列时,求
的值;
②求证:存在唯一的正整数
,使得
.
(2)设数列
是公比为
的等比数列,若存在
,
(
,
,
)使得
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com