精英家教网 > 高中数学 > 题目详情
过点(0 ,-2 )的直线与抛物线y2=8x 交于A ,B 两点,若线   段AB 中点的横坐标为2 ,求线段AB 的长度.
解:直线AB 的方程为y+2=kx ,
代入抛物线方程得k2x2- (4k+8 )x+4=0 .

又由题意得,解得k=2,或k=-1(不合题意,舍去),
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P是圆x2+y2=9,上任意一点,由P点向x轴做垂线段PQ,垂足为Q,点M在PQ上,且
PM
=2
MQ
,点M的轨迹为曲线C.
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)过点(0,-2)的直线l与曲线C相交于A、B两点,试问在直线y=-
1
8
上是否存在点N,使得四边形OANB为矩形,若存在求出N点坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点F1(-2
2
,0)和F22
2
,0),长轴长6.
(1)设直线y=x+2交椭圆C于A、B两点,求线段AB的中点坐标.
(2)求过点(0,2)的直线被椭圆C所截弦的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆C过点(0,-1),圆心在y轴的正半轴上,且与圆(x-4)2+(y-4)2=9外切.
(Ⅰ)求圆C的方程;
(Ⅱ)直线l过点(0,2)交圆C于A、B两点,若坐标原点O在以AB为直径的圆内,求直线l的倾斜角α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

A组:已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率e=
2
3
3
,一条渐近线方程为y=
3
3
x

(1)求双曲线C的方程
(2)过点(0,
2
)倾斜角为45°的直线l与双曲线c恒有两个不同的交点A和B,求|AB|.
B组:已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率e=
2
3
3
,一条渐近线方程为y=
3
3
x

(1)求双曲线C的方程
(2)过点(0,
2
)是否存在一条直线l与双曲线c有两个不同交点A和B且
OA
OB
=2,若存在求出直线方程,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

现给出下列命题:
①若p,q是两个简单命题,则“p且q为真”是“p或q为真”的必要不充分条件;
②若椭圆
x2
16
+
y2
25
=1
的两个焦点为F1,F2,且弦AB过点F1,则△ABF2的周长为16;
③过点(0,2)与抛物线y2=-5x仅有一个公共点的直线有3条;
④导数为0的点一定是函数的极值点.
其中正确的结论的序号是
 
(要求写出所有正确结论的序号).

查看答案和解析>>

同步练习册答案