分析 先化简$tan(-\frac{13π}{4})$和$tan(-\frac{17π}{5})$,再利用正切函数的单调性即可比较它们的大小.
解答 解:∵$tan(-\frac{13π}{4})$=-tan$\frac{13π}{4}$=-tan$\frac{π}{4}$,
$tan(-\frac{17π}{5})$=-tan$\frac{17π}{5}$=-tan$\frac{2π}{5}$;
又函数y=tanx在(-$\frac{π}{2}$,$\frac{π}{2}$)内是单调增函数,
且$\frac{π}{4}$<$\frac{2π}{5}$,
∴tan$\frac{π}{4}$<tan$\frac{2π}{5}$,
∴-tan$\frac{π}{4}$>-tan$\frac{2π}{5}$,
即$tan(-\frac{13π}{4})$>$tan(-\frac{17π}{5})$.
故答案为:>.
点评 本题考查了正切函数的图象与性质的应用问题,也考查了三角函数的化简问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | 1030人 | B. | 970人 | C. | 97人 | D. | 103人 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com