精英家教网 > 高中数学 > 题目详情
9.为了得到函数y=2sin(2x-$\frac{π}{3}$)的图象,可以将函数y=2sin2x的图象(  )
A.向右平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向左平移$\frac{π}{3}$个单位长度

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:将函数y=2sin2x的图象向右平移$\frac{π}{6}$个单位长度,可得函数y=2sin2(x-$\frac{π}{6}$)=2sin(2x-$\frac{π}{3}$)的图象,
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若f(x)=log2x,且f′(a)=1,则a=$\frac{1}{ln2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若${C}_{4}^{x}$+${C}_{4}^{x+1}$=5,则x=(  )
A.0或3B.0C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,已知点S(0,3),SA,SB与圆C:x2+y2-my=0(m>0)和抛物线x2=-2py(p>0)都相切,切点分别为M,N和A,B,SA∥ON,$\overrightarrow{AB}$=λ$\overrightarrow{MN}$,则实数λ的值为(  )
A.4B.2$\sqrt{3}$C.3D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设f(x)=-x2-ax+1,g(x)=ax2+x+a
(1)若f(x)在[1,2]上的最小值为4,求出a的值;
(2)若存在x1∈[1,2],使得对任意的x2∈[1,2],都有f(x1)≥g(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知角θ的顶点在坐标原点,始边与x轴正半轴重合终边在直线3x-y=0上,则$\frac{sinθ-cosθ}{sinθ+cosθ}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.A、B、C、D分别是复数z1,z2,z3=z1+z2,z4=z1-z2在复平面内对应的点,O是原点,若|z1|=|z2|,则△COD一定是(  )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.用反证法证明命题:“m,n∈N*,如果mn能被3整除,那么m,n中至少有一个数能被3整除”时,第一步反设的内容应为m,n都不能被3整除.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若对于任意实数x,有|x+a|-|x+1|<2a恒成立,则实数a的取值范围是($\frac{1}{3}$,+∞).

查看答案和解析>>

同步练习册答案