分析 由条件根据绝对值的意义求得|x+a|-|x+1|的最大值为|a-1|,再由|a-1|<2a,求得实数a的取值范围.
解答 解:|x+a|-|x+1|表示数轴上的x对应点到-a对应点的距离减去它到-1对应点的距离,
故它的最大值为|a-1|.
由于对于任意实数x,有|x+a|-|x+1|<2a恒成立,可得|a-1|<2a,
∴$\left\{\begin{array}{l}{a>0}\\{-2a<a-1<2a}\end{array}\right.$,求得a>$\frac{1}{3}$,
故答案为:($\frac{1}{3}$,+∞).
点评 本题主要考查绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{6}$个单位长度 | B. | 向右平移$\frac{π}{3}$个单位长度 | ||
| C. | 向左平移$\frac{π}{6}$个单位长度 | D. | 向左平移$\frac{π}{3}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1] | B. | [2,+∞) | C. | (-∞,2] | D. | [-1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com