精英家教网 > 高中数学 > 题目详情
函数y=
2-x
+
x
的值域是(  )
A.[
2
,+∞)
B.[0,
2
]
C.[
2
,2)
D.[
2
,2]
函数y=
2-x
+
x
的定义域为[0,2]
0≤
2-x
≤2
0≤
x
≤2
(
2-x
)
2
+(
x
)
2
=2

∴设
2-x
=
2
sinθ
x
=
2
cosθ
  θ∈[0,
π
2
]

∴y=
2
sinθ+
2
cosθ
=2(
2
2
sinθ+ 
2
2
cosθ )
=2sin(θ+
π
4

θ∈[0,
π
2
]
,∴(θ+
π
4
)∈[
π
4
4
]

∴2sin(θ+
π
4
)∈[
2
,2]
故选 D
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法:
①“?x∈R,2x>3”的否定是“?x∈R,2x≤3”;
②命题“函数y=sin(?x+
π
3
)
的最小正周期是π,则?=2”是真命题;
③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是假命题;
④f(x)是(-∞,0)∪(0,+∞)上的偶函数,x>0时f(x)的解析式是f(x)=x3
则x<0时f(x)的解析式是f(x)=-x3
其中正确的说法是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
2-x
+
x
的值域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
请观察表中值y随x值变化的特点,完成以下的问题.
函数f(x)=x+
4
x
(x>0)在区间(0,2)上递减;
函数f(x)=x+
4
x
(x>0)在区间
(2,0)
(2,0)
上递增.
当x=
2
2
时,y最小=
4
4

证明:函数f(x)=x+
4
x
(x>0)在区间(0,2)递减.
思考:(直接回答结果,不需证明)
(1)函数f(x)=x+
4
x
(x<0)有没有最值?如果有,请说明是最大值还是最小值,以及取相应最值时x的值.
(2)函数f(x)=ax+
b
x
,(a<0,b<0)在区间
[-
b
a
,0)
[-
b
a
,0)
 和
(0,
b
a
]
(0,
b
a
]
上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)对于定义域分别为M,N的函数y=f(x),y=g(x),规定:
函数h(x)=
f(x)•g(x),当x∈M且x∈N
f(x),当x∈M且x∉N
g(x),当x∉M且x∈N

(1)若函数f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函数h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,设bn为曲线y=h(x)在点(an,h(an))处切线的斜率;而{an}是等差数列,公差为1(n∈N*),点P1为直线l:2x-y+2=0与x轴的交点,点Pn的坐标为(an,bn).求证:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常数,且α∈[0,2π],请问,是否存在一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cosx,若存在请写出一个f(x)的解析式及一个α的值,若不存在请说明理由.

查看答案和解析>>

同步练习册答案