精英家教网 > 高中数学 > 题目详情
9.设x+y2=${∫}_{0}^{y-x}$cos2tdt,求$\frac{dy}{dx}$.

分析 先根据定积分运算法则,化简得到x+y2=$\frac{1}{2}$(y-x)+$\frac{1}{4}$sin2(y-x),利用隐函数导数的运算性质即可得出.

解答 解:设x+y2=${∫}_{0}^{y-x}$cos2tdt=${∫}_{0}^{y-x}$$\frac{1}{2}$(1+cos2t)dt=$\frac{1}{2}$(t+$\frac{1}{2}$sin2t)|${\;}_{0}^{y-x}$=$\frac{1}{2}$(y-x+$\frac{1}{2}$sin(2y-2x))=$\frac{1}{2}$y-$\frac{1}{2}$x+$\frac{1}{4}$sin(2y-2x),
∴x+y2=$\frac{1}{2}$(y-x)+$\frac{1}{4}$sin2(y-x),
∴d(x+y2)=$\frac{1}{2}$d(y-x)+$\frac{1}{4}$dsin(2y-2x),
∴dx+2dy=$\frac{1}{2}$dy-$\frac{1}{2}$dx+$\frac{1}{4}$×2cos(2y-2x)d(y-x),
∴dx+2dy=$\frac{1}{2}$dy-$\frac{1}{2}$dx+$\frac{1}{2}$cos(2y-2x)(dy-dx),
∴$\frac{dy}{dx}$=$\frac{3+cos(2y-2x)}{cos(2y-2x)+1-4y}$.

点评 本题考查了定积分的计算和隐函数导数的运算性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在Rt△ABC中,∠C=90°,B E平分∠A BC交 AC于点E,点D在AB上,DE⊥EB,且${A}D=2\sqrt{3}$,AE=6.
(I)判断直线 AC与△BDE的外接圆的位置关系并说明理由;
(II)求EC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=a2=1,且an+2=$\frac{1}{{a}_{n+1}}$+an(n=1,2,3…)求a2004

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.数列{an}满足${a}_{1}=2,{a}_{n}=2{a}_{n-1}(n∈{N}^{*},n>1)$,则数列{log2an}的前10项和S10=(  )
A.55B.50C.45D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{\sqrt{3}}{2}sin2x-{cos}^{2}x+\frac{1}{2}$.
(1)当$x∈[0,\frac{π}{2}]$时,求函数f(x)的取值范围;
(2)将f(x)的图象向左平移$\frac{π}{6}$ 个单位得到函数g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.写出求满足12+22+32+…+n2>20152的最小正整数n的算法,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,则其表面积为(  )
A.38+πB.38+2πC.40+πD.40+2π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}是正项等比数列,且a1=2,a3=18,数列{bn}成等差数列,且b1+b2+b3+b4=a1+a2+a3,b1+b2+b9+b10=a1+a2+a4
(1)求数列{bn}的通项公式;
(2)设Pn=b1+b4+b7+…+b3n+1,Qn=b2+b4+b6+…+b2n+2,其中n∈N+,试比较Pn与Qn的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{x}^{2}+c}{ax+b}$为奇函数,f(1)<f(3),且不等式0≤f(x)≤$\frac{3}{2}$的解集是[-2,-1]∪[2,4].
(1)求a,b,c;
(2)是否存在实数m使不等式f(sinθcosθ+sinθ+cosθ-$\sqrt{2}$)≤m2-4对一切θ∈R都成立?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案