精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数f(x)=mx2﹣2x﹣3,关于实数x的不等式f(x)≤0的解集为(﹣1,n)
(1)当a>0时,解关于x的不等式:ax2+n+1>(m+1)x+2ax;
(2)是否存在实数a∈(0,1),使得关于x的函数y=f(ax)﹣3ax+1(x∈[1,2])的最小值为﹣5?若存在,求实数a的值;若不存在,说明理由.

【答案】
(1)解:由不等式mx2﹣2x﹣3≤0的解集为(﹣1,n)知

关于x的方程mx2﹣2x﹣3=0的两根为﹣1和n,且m>0

由根与系数关系,得

所以原不等式化为(x﹣2)(ax﹣2)>0,

①当0<a<1时,原不等式化为 ,且 ,解得 或x<2;

②当a=1时,原不等式化为(x﹣2)2>0,解得x∈R且x≠2;③

④当a>1时,原不等式化为 ,且 ,解得 或x>2;

综上所述

当0<a≤1时,原不等式的解集为 或x<2};

当1<a<2时,原不等式的解集为{x|x>2或


(2)解:假设存在满足条件的实数a,

由(1)得:m=1,

∴f(x)=x2﹣2x﹣3,

∴y=f(ax)﹣3ax+1

=a2x﹣2ax﹣3﹣3ax+1

=(ax2﹣(3a+2)ax﹣3,

令ax=t,(a2≤t≤a),

则y=t2﹣(3a+2)t﹣3

∴对称轴为:t=

又0<a<1,

∴a2<a<1,1<

∴函数y=t2﹣(3a+2)t﹣3在[a2,a]递减,

∴t=a时,y最小为:y=﹣2a2﹣2a﹣3=﹣5,

解得:a=


【解析】(1)根据韦达定理得方程组求出m,n的值,再通过讨论a的范围,从而求出不等式的解集;(2)把m=1代入方程,得出y=(ax2﹣(3a+2)ax﹣3,令ax=t,(a2≤t≤a),则y=t2﹣(3a+2)t﹣3,得出函数的单调性,从而表示出y=f(t)的最小值,进而求出a的值.
【考点精析】关于本题考查的二次函数的性质,需要了解当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义:如果函数f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)满足 ,则称函数f(x)是[a,b]上的“双中值函数”.已知函数f(x)=x3﹣x2+a是[0,a]上的“双中值函数”,则实数a的取值范围是(
A.
B.(
C.( ,1)
D.( ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心是直线x﹣y+1=0与x轴的交点,且圆C与(x﹣2)2+(y﹣4)2=9相外切,若过点P(﹣1,1)的直线l与圆C交于A,B两点,当∠ACB最小时,弦AB的长为(
A.4
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1 , D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:

(1)平面ADE⊥平面BCC1B1
(2)直线A1F∥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角A,B,C所对的边长分别为a,b,c.已知
(Ⅰ)当b=2时,求c;
(Ⅱ)求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明B1C1⊥CE;
(Ⅱ)求二面角B1﹣CE﹣C1的正弦值.
(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为 ,求线段AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x的图象向左平移 个单位后得到函数g(x)的图象,若使|f(x1)﹣g(x2)|=2成立x1 , x2的满足 ,则φ的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别根据下列条件,求圆的方程:
(1)过两点(0,4),(4,6),且圆心在直线x﹣2y﹣2=0上;
(2)半径为 ,且与直线2x+3y﹣10=0切于点(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该机床开始盈利?
(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.

查看答案和解析>>

同步练习册答案