精英家教网 > 高中数学 > 题目详情
6.一化工厂生产某种产品,其生产成本为20元/kg,出厂价为50元/kg,在生产1kg这种产品的同时,还生产1.5m3的污水,污水的处理有两种方式:一种是直接排入河流,另一种是输送到污水处理厂,环保部门对排入河流的污水收费标准是15元/m3,污水处理厂对污水的收费标准是5元/m3,但只能净化污水的80%,未净化的污水仍排入河流,且污水排放费仍要生产产品的化工厂支付,若污水处理厂处理污水的最大能力是1m3/min,环保部门允许该厂的污水排入河流的最大排放量为0.4m3/min,问:该化工厂每分钟生产多少产品,每分钟直接流入河流的污水为多少时,纯利润最高?

分析 设每分钟生产产品x kg,因此产生污水x m3,其中y m3直接排入河流,该化工厂每分钟的纯利润为z,建立约束条件和目标函数,利用线性规划的知识进行求解即可.

解答 解:设每分钟生产产品x kg,因此产生污水x m3,其中y m3直接排入河流,该化工厂每分钟的纯利润为z
则即$\left\{\begin{array}{l}{0≤\frac{3}{2}-y≤1}\\{y+(\frac{3}{2}x-y)×\frac{1}{5}≤\frac{2}{5}}\\{x≥0,y≥0}\end{array}\right.$,即$\left\{\begin{array}{l}{0≤3x-2y≤2}\\{3x+8y≤4}\\{x≥0,y≥0}\end{array}\right.$,
作出不等式组对应的平面区域如图:
目标函数z=(50-20x)-15[y+($\frac{3}{2}$x-y)$•\frac{1}{5}$]-5($\frac{3}{2}$x-y)=18x-7y.
由图象可知当直线z=18x-7y经过点B时,z有最大值,
由$\left\{\begin{array}{l}{3x-2y=2}\\{3x+8y=4}\end{array}\right.$得B($\frac{4}{5}$,$\frac{1}{5}$),
即当x=$\frac{4}{5}$,y=$\frac{1}{5}$时,z取得最大值z=13,
即当每分钟生产0.8kg产品,每分钟直接流入河流的污水为0.2m3时,纯利润最高.

点评 本题主要考查线性规划的应用,设出变量求出目标函数,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.计算log327-($\frac{1}{2}$)-2=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=cos2x+$\frac{1}{2}$sin(2x+$\frac{π}{2}$)-$\frac{1}{2}$.
(1)求f(x)在($\frac{π}{6}$,$\frac{2π}{3}$)上的值域.
(2)设A,B,C为△ABC的三个内角,若角C满足f($\frac{C}{2}$)=$\frac{\sqrt{2}}{2}$,且边c=$\sqrt{2}$a,求角A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,若asinBcosC+csinBcosA=$\frac{1}{2}$b,且ac=4,则△ABC的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其左右焦点分别为F1,F2,焦距为4,双曲线C2:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1,C1,C2的离心率互为倒数.
(1)求椭圆的标准方程;
(2)过F2作直线交抛物线y2=2x于A,B两点,射线OA,OB分别交椭圆C1于点D,E.证明:$\frac{|OD||OE|}{|DE|}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆的中心在原点焦点在x轴上离心率是$\frac{\sqrt{5}}{5}$,且过点P(-5,4),求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.△ABC所在平面内有一点O,满足2$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,过点O的直线分别交AB,AC于点M,N,且$\overrightarrow{AM}$=λ$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{2}{3}$$\overrightarrow{AC}$,则λ=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)的定义域为R,有下列三个命题:
①若存在常数M,使得对任意x∈R,有f(x)≤M,则M是函数f(x)的最大值;
②若存在x0∈R,使得对任意的x∈R,且x≠x0,有f(x)<f(x0),则f(x0)是函数f(x)的最大值.
③若f(2x+1)的最大值为2,则f(4x-1)的最大值为2.
这些命题中,真命题的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某班共45人,一次考试前20人平均分高于全班20%,后20人平均分占全班平均分x%,求x的取值范围.

查看答案和解析>>

同步练习册答案