精英家教网 > 高中数学 > 题目详情
12.设集合A={x|x2-x-2<0},B={x|x2≤1},则A∪B=(  )
A.{x|-1≤x<2}B.{x|-$\frac{1}{2}$<x≤1}C.{x|x<2}D.{x|1≤x<2}

分析 确定出A,B,找出两集合的并集即可.

解答 解:由x2-x-2<0得到(x+1)(x-2)<0,解得-1<x<2,即A={x|-1<x<2},
由x2≤1,即-1≤x≤1,即B={x|-1≤x≤1},
则A∪B={x|-1≤x<2},
故选:A.

点评 此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.底面为边长是n的正方形的四棱锥的直观图、正视图和俯视图如图所示,画出该几何体的侧视图,并求出该四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若直线x+ay-1=0与4x-2y+3=0垂直,则实数a的值为(  )
A.2B.-2C.-1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\frac{5{x}^{2}-8x+2}{{x}^{3}-2{x}^{2}-2x+1}$=$\frac{A}{x+1}$+$\frac{Bx+C}{{x}^{2}-3x+1}$,求A、B、C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥平面ABCD,Q为AD的中点,PA=PD,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求证:平面PQB⊥平面PAD;
(2)若异面直线AB与PC所成角为60°,求PA的长;
(3)在(2)的条件下,求平面PQB与平面PDC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC中,角A,B,C所对的边分别为a,b,c.ccosA+$\sqrt{3}$csinA-b-a=0..
(1)求角C的大小;
(2)求y=sinA+sinB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标平面内,已知点A(-1,3),B(2,5),$\overrightarrow{AC}$=(1,2).
(1)求$\overrightarrow{CB}$;
(2)求(2$\overrightarrow{AC}$+$\overrightarrow{CB}$)•$\overrightarrow{BA}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)可导,则$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{3△x}$=(  )
A.f′(1)B.$\frac{1}{3}$f′(1)C.不存在D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知sinα+cosα=$\frac{{\sqrt{10}}}{5}$,则tanα=(  )
A.-3或$-\frac{1}{3}$B.-3C.$-\frac{1}{3}$D.3或$-\frac{1}{3}$

查看答案和解析>>

同步练习册答案