精英家教网 > 高中数学 > 题目详情
设曲线f(x)=
1
3
x3-
a
2
x2+1
(其中a>0)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2).证明:当x1≠x2时,f′(x1)≠f′(x2
分析:根据f(x)=
1
3
x3-
a
2
x2+1
,f′(x)=x2-ax,由于点(t,f(t))处的切线方程为y-f(t)=f'(t)(x-t),而点(0,2)在切线上,所以2-f(t)=f'(t)(-t),由此利用反证法能够证明f'(x1)≠f'(x2).
解答:解:f(x)=
1
3
x3-
a
2
x2+1
,f'(x)=x2-ax.
由于点(t,f(t))处的切线方程为
y-f(t)=f'(t)(x-t),而点(0,2)在切线上,所以2-f(t)=f'(t)(-t),
化简得
2
3
t3-
a
2
t2+1=0

由于曲线y=f(x)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2),
即x1,x2满足方程
2
3
t3-
a
2
t2+1=0

下面用反证法证明结论:
假设f'(x1)=f'(x2),
则下列等式成立:
2
3
x
3
1
-
a
2
x
2
1
+1=0 ,(1)
2
3
x
3
2
-
a
2
x
2
2
+1=0,(2)
x
2
1
-ax1=
x
2
2
-a
x
 
2
,(3)

由(3)得x1+x2=a
由(1)-(2)得x12+x1x2+x22=
3a2
4
…(4)

3a2
4
=x12+x1x2+x22=(x1+x2)2-x1x2=a2-x1(a-x1)=(x1-
a
2
)2+
3a2
4
3a2
4

x1=
a
2

此时x2=
a
2
,与x1≠x2矛盾,
所以f(x1)≠f(x2).
点评:本题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)当a=
1
3
时,求函数f(x)的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2-2bx-
5
12
,若对于?x1∈[1,2],?x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax3+
3
2
(2a-1)x2-6x(a∈R)

(1)当a=1时,求曲线y=f(x)在点(-1,f(-1))处的切线方程;
(2)当a=
1
3
时,求f(x)的极大值和极小值;
(3)若函数f(x)在区间(-∞,-3)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南省、岳阳县一中高三11月联考理科数学 题型:解答题

(本小题满分13分)(第一问8分,第二问5分)

已知函数f(x)=2lnxg(x)=ax2+3x.

(1)设直线x=1与曲线yf(x)和yg(x)分别相交于点PQ,且曲线yf(x)和yg(x)在点PQ处的切线平行,若方程f(x2+1)+g(x)=3xk有四个不同的实根,求实数k的取值范围;

(2)设函数F(x)满足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题

(本小题共13分)

已知函数为函数的导函数.

(Ⅰ)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是,求的值;

(Ⅱ)若函数,求函数的单调区间.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题

(本小题共13分)

已知函数为函数的导函数.

(Ⅰ)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是,求的值;

(Ⅱ)若函数,求函数的单调区间.

 

查看答案和解析>>

同步练习册答案