精英家教网 > 高中数学 > 题目详情
已知抛物线的焦点为,过点的直线交抛物线于点.
(Ⅰ)若(点在第一象限),求直线的方程;
(Ⅱ)求证:为定值(点为坐标原点).
(Ⅰ);(Ⅱ)详见解析

试题分析:(Ⅰ)由抛物线的方程知焦点为,准线为。设,因为点在第一象限所以。由抛物线的定义可知等于点到抛物线准线的距离,即,可得,从而可求得点的坐标。由点和点可求直线的方程。(Ⅱ)可分直线斜率存在和不存在两种情况讨论,为了省去讨论也可直接设直线方程为,与抛物线联立方程,消去整理可得关于的一元二次方程,因为有两个交点即方程有两根,所以判别式应大于0。然后用韦达定理得根与系数的关系。用向量数量积公式求即可得证。
试题解析:解:(Ⅰ)设,由题意,.
在抛物线上,且
到准线的距离为.
.                                     2分

.
.
,                                              4分
直线的方程为,即.        5分
(Ⅱ)由题意可设直线的方程为:.
,即.          7分
显然恒成立.
,则                  9分

.
为定值.                                11分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点,动点满足:,且
(1)求动点的轨迹的方程;
(2)已知圆W: 的切线与轨迹相交于P,Q两点,求证:以PQ为直径的圆经过坐标原点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过如下五个点中的三个点:.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为椭圆的左顶点,为椭圆上不同于点的两点,若原点在的外部,且为直角三角形,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,椭圆上的点满足,且△的面积为
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右顶点分别为,过点的动直线与椭圆相交于两点,直线与直线的交点为,证明:点总在直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线的极坐标方程为,曲线的极坐标方程为,曲线相交于两点.(
(Ⅰ)求两点的极坐标;
(Ⅱ)曲线与直线为参数)分别相交于两点,求线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中是过抛物线焦点的两条弦,且其焦点,点轴上一点,记,其中为锐角.

(1)求抛物线方程;
(2)如果使“蝴蝶形图案”的面积最小,求的大小?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点P到点的距离与它到直线y+3=0的距离相等,则P的轨迹方程为 (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线交抛物线两点.若该抛物线上存在点,使得,则的取值范围为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的顶点在原点,焦点F与双曲线的右焦点重合,过点且切斜率为1的直线与抛物线交于两点,则弦的中点到抛物线准线的距离为_____________________.

查看答案和解析>>

同步练习册答案