精英家教网 > 高中数学 > 题目详情
已知椭圆的左、右焦点分别为,椭圆上的点满足,且△的面积为
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右顶点分别为,过点的动直线与椭圆相交于两点,直线与直线的交点为,证明:点总在直线上.
(Ⅰ)椭圆的方程为;(Ⅱ)详见解析.

试题分析:(Ⅰ)由焦点坐标知:.又椭圆上的点满足,由可求得,再由勾股定理可求得,从而求得.再由求得,从而得椭圆的方程.(Ⅱ)首先考虑轴垂直的情况,此时可求出直线与直线的交点为的方程是:,代入验证知点在直线上.当直线不与轴垂直时,设直线的方程为,点,则,要证明共线,只需证明,即证明.
,显然成立;若, 即证明
,这显然用韦达定理.
试题解析:(Ⅰ)由题意知:,                 1分
椭圆上的点满足,且


                      2分
                      3分
椭圆的方程为.                     4分
(Ⅱ)由题意知
(1)当直线轴垂直时,,则的方程是:
的方程是:,直线与直线的交点为
∴点在直线上.                          6分
(2)当直线不与轴垂直时,设直线的方程为

                   7分
共线,∴      8分
,需证明共线,
需证明,只需证明
,显然成立,若, 即证明

成立,                 11分
共线,即点总在直线上.               12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为,过点的直线交抛物线于点.
(Ⅰ)若(点在第一象限),求直线的方程;
(Ⅱ)求证:为定值(点为坐标原点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆)过点,且椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若动点在直线上,过作直线交椭圆两点,且为线段中点,再过作直线.证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知过点的椭圆的右焦点为,过焦点且与轴不重合的直线与椭圆交于两点,点关于坐标原点的对称点为,直线分别交椭圆的右准线两点.

(1)求椭圆的标准方程;
(2)若点的坐标为,试求直线的方程;
(3)记两点的纵坐标分别为,试问是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆与双曲线有公共的焦点,过椭圆E的右顶点作任意直线l,设直线l交抛物线于M、N两点,且
(1)求椭圆E的方程;
(2)设P是椭圆E上第一象限内的点,点P关于原点O的对称点为A、关于x轴的对称点为Q,线段PQ与x轴相交于点C,点D为CQ的中点,若直线AD与椭圆E的另一个交点为B,试判断直线PA,PB是否相互垂直?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点。
(1)求双曲线的方程;
(2)若直线与椭圆及双曲线都恒有两个不同的交点,且L与的两个焦点A和B满足(其中O为原点),求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则方程表示的曲线不可能是(   )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线上一点P到y轴的距离为5,则点P到焦点的距离为(    )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆内有一点,过点的弦恰好以为中点,那么这条弦所在直线的斜率为     ,直线方程为      

查看答案和解析>>

同步练习册答案