精英家教网 > 高中数学 > 题目详情
甲、乙两校参加科普知识大赛,每校派出2人参赛,每人回答一个问题,答对者为本校赢得2分,答错的零分,假设甲校派出的2人每人答对的概率都为
3
4
,乙校派出的2人答对的概率分别为
1
2
2
3
,且各人回答正确与否相互没有影响,用X表示甲校的总得分.
(1)求随机变量X的分布列和数学期望;
(2)事件A:甲、乙两校总分和为4,事件B:甲校总得分不小于乙校总得分,求P(AB).
考点:离散型随机变量的期望与方差,相互独立事件的概率乘法公式
专题:应用题,概率与统计
分析:(1)确定随机变量X的可能取值,求出相应的概率,即可求得随机变量X的概率分布列和数学期望;
(2)分别求得事件A,B的概率,利用互斥事件的概率公式,可得结论.
解答: 解:(1)X的取值为0,2,4,则
P(X=0)=
C
0
2
•(
1
4
)2
=
1
16
,P(X=2)=
C
1
2
3
4
1
4
=
3
8
,P(X=4)=
C
2
2
•(
3
4
)2
=
9
16

X的分布列
 X  0  2  4
 P  
1
16
 
3
8
 
9
16
EX=0×
1
16
+2×
3
8
+4×
9
16
=3;
(2)事件AB为如下两个互斥事件的和事件:
事件C:甲校总得分为4分,乙校总得分为0分;事件D:甲校总得分为2分,乙校总得分为2分,
P(C)=
9
16
1
2
1
3
=
3
32
,P(D)=
3
8
•(
1
2
1
3
+
1
2
2
3
)
=
3
16

∴P(AB)=P(C+D)=
3
32
+
3
16
=
9
32
点评:本题考查互斥事件概率公式的运用,考查离散型随机变量的分布列与数学期望,确定变量的取值,求出相应的概率是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(sinx)=cos2x,则f(cos15°)的值为(  )
A、
1
2
B、-
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1的方程为x2+(y-2)2=1,定直线l的方程为y=-1.动圆C与圆C1外切,且与直线l相切.
(1)求动圆圆心C的轨迹M的方程;
(2)直线l′与轨迹M相切于第一象限的点P,过点P作直线l′的垂线恰好经过点A(0,6),并交轨迹M于异于点P的点Q,求直线PQ的方程及弦|PQ|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知sinα=
3
2
,α∈(
π
2
,π),求cosα,tanα.
(2)已知cosα=-
4
5
,求sinα,tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-1,0),离心率为
2
2
,函数f(x)=
1
2x
+
3
4
x,
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设P(t,0)(t≠0),Q(f(t),0),过P的直线l交椭圆P于A,B两点,求
QA
QB
的最小值,并求此时的t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+ax-lnx.
(1)若a=1,试求函数f(x)的单调区间;
(2)过坐标原点O作曲线y=f(x)的切线,证明:切点的横坐标为1;
(3)令g(x)=
f(x)
ex
,若函数g(x)在区间(0,1]上是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数:
(1)y=(2x2+3)(3x-1);
(2)y=(
x
-2)2
(3)y=x-sin
x
cos
x

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的最小值为-2,且它的图象经过点(0,
3
)和(
6
,0).
(1)写出一个满足条件的函数解析式f(x);
(2)若函数f(x)在(0,
π
8
]上单调递增,求此函数所有可能的解析式;
(3)若函数f(x)在[0,2]上恰有一个最大值和最小值,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

2
0
(3-
4x-x2
)dx=
 

查看答案和解析>>

同步练习册答案