精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+ax-lnx.
(1)若a=1,试求函数f(x)的单调区间;
(2)过坐标原点O作曲线y=f(x)的切线,证明:切点的横坐标为1;
(3)令g(x)=
f(x)
ex
,若函数g(x)在区间(0,1]上是减函数,求a的取值范围.
考点:导数在最大值、最小值问题中的应用,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(1)利用导数求得函数的单调区间即可;
(2)利用导数的几何意义,求得曲线的切线斜率,写出切线方程,即可得证;
(3)由题意得,若函数g(x)在区间(0,1]上是减函数,
则?x∈(0,1],g'(x)≤0,即:f'(x)≤f(x),解不等式即可求得a的取值范围.
解答: 解:(1)a=1时,f(x)=x2+x-lnx(x>0)-------(1分)∴f′(x)=2x+1-
1
x
=
(2x-1)(x+1)
x
---------(3分)x∈(0,
1
2
),f′(x)<0,x∈(
1
2
,+∞),f′(x)>0
,f(x)的减区间为(0,
1
2
)
,增区间(
1
2
,+∞)
-------(5分)
(2)设切点为M(t,f(t)),f′(x)=2x+ax-
1
x

切线的斜率k=2t+a-
1
t
,又切线过原点k=
f(t)
t
f(t)
t
=2t+a-
1
t
,即:t2+at-lnt=2t2+at-1∴t2-1+lnt=0
-------------(7分)
t=1满足方程t2-1+lnt=0,由y=1-x2,y=lnx图象可知x2-1+lnx=0
有唯一解x=1,切点的横坐标为1;-----(8分)
或者设φ(t)=t2-1+lnt,φ′(t)=2t+
1
t
>0
φ(t)在(0,+∞)递增,且φ(1)=0,方程t2-1+lnt=0有唯一解--------(9分)
(3)g′(x)=
f′(x)-f(x)
ex
,若函数g(x)在区间(0,1]上是减函数,
则?x∈(0,1],g′(x)≤0,即:f′(x)≤f(x),所以x2-2x+
1
x
-lnx+a(x-1)≥0
---(*)------------(10分)
设h(x)=x2-2x+
1
x
-lnx+a(x-1)
h′(x)=2x-2-
1
x2
-
1
x
+a=-
(1-x)(2x2+2x+1)
x2
-2+a

若a≤2,则h'(x)≤0,h(x)在(0,1]递减,h(x)≥h(1)=0
即不等式f'(x)≤f(x),?x∈(0,1],恒成立----------------------(11分)
若a>2,∵φ(x)=2x-
1
x2
-
1
x
-2∴φ′(x)=2+
2
x3
+
1
x2
>0
φ(x)在(0,1]上递增,φ(x)≤φ(1)=-2?x0∈(0,1),
使得φ(x0)=-ax∈(x0,1),φ(x)>-a,即h'(x)>0,h(x)在(x0,1]上递增,h(x)≤h(1)=0
这与?x∈(0,1],x2-2x+
1
x
-lnx+a(x-1)≥0
矛盾----------------------------(12分)
综上所述,a≤2-----------------------------------------(13分)
解法二:g′(x)=
f′(x)-f(x)
ex
,若函数g(x)在区间(0,1]上是减函数,
则?x∈(0,1],g'(x)≤0,即:f'(x)≤f(x),所以x2-2x+
1
x
-lnx+a(x-1)≥0
-----------------(10分)
显然x=1,不等式成立
当x∈(0,1)时,a≤
x2-2x+
1
x
-lnx
1-x
恒成立-------------------------------------(11分)
h(x)=
x2-2x+
1
x
-lnx
1-x
,h′(x)=
-x2+2x-1-
1
x2
+
1
x
-lnx
(1-x)2

φ(x)=-x2+2x-1-
1
x2
+
1
x
-lnx,φ′(x)=2(1-x)+
(1-x)(2+x)
x3
>0
φ(x)在(0,1)上递增,
φ(x)<φ(1)=0所以h'(x)<0-----------------------------(12分)h(x)在(0,1)上递减,h(x)>h(1)=
lim
x→1
x2-2x+
1
x
-lnx
1-x
=
lim
x→1
(-2x+2+
1
x
+
1
x2
)=2

所以 a≤2----------------------------------------------------------------(13分)
点评:本题主要考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值.
考查分类讨论思想、转化划归思想的运用能力,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=2,an=3an-1+2(n≥2),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且Sn=2an-3n,(n∈N*).
(Ⅰ)证明数列{an+3}为等比数列;    
(Ⅱ)记bn=
6
n(6×2n-Sn)
,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一学生1000人,每周一次同时在两个可容纳600人的会议室,开设“音乐欣赏”与“美术鉴赏”的校本课程.要求每个学生都参加,要求第一次听“音乐欣赏”课的人数为m(400<m<600),其余的人听“美术鉴赏”课;从第二次起,学生可从两个课中自由选择.据往届经验,凡是这一次选择“音乐欣赏”的学生,下一次会有20%改选“美术鉴赏”,而选“美术鉴赏”的学生,下次会有30%改选“音乐欣赏”,用an,bn分别表示在第n次选“音乐欣赏”课的人数和选“美术鉴赏”课的人数.
(1)若m=500,分别求出第二次,第三次选“音乐欣赏”课的人数a2,a3
(2)①证明数列{an-600}是等比数列,并用n表示an
②若要求前十次参加“音乐欣赏”课的学生的总人次不超过5800,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两校参加科普知识大赛,每校派出2人参赛,每人回答一个问题,答对者为本校赢得2分,答错的零分,假设甲校派出的2人每人答对的概率都为
3
4
,乙校派出的2人答对的概率分别为
1
2
2
3
,且各人回答正确与否相互没有影响,用X表示甲校的总得分.
(1)求随机变量X的分布列和数学期望;
(2)事件A:甲、乙两校总分和为4,事件B:甲校总得分不小于乙校总得分,求P(AB).

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,sinA=
5
13
,cosB=
3
5
,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天.

(Ⅰ)求此人到达当日空气重度污染的概率;
(Ⅱ)求此人在该市停留期间只有1天空气质量优良的概率;
(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,过F2作直线l与椭圆C交于点M、N.
(1)若椭圆C的离心率为
1
2
,右准线的方程为x=4,M为椭圆C上顶点,直线l交右准线于点P,求
1
PM
+
1
PN
的值;
(2)当a2+b2=4时,设M为椭圆C上第一象限内的点,直线l交y轴于点Q,F1M⊥F1Q,证明:点M在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a1,a2,…a10成等比数列,且a1a2…a10=32,记x=a1+a2+…+a10,y=
1
a1
+
1
a2
+…+
1
a10
,则
x
y
=
 

查看答案和解析>>

同步练习册答案