【题目】已知数列{an},{bn}满足 , ,其中n∈N+ . (I)求证:数列{bn}是等差数列,并求出数列{an}的通项公式;
(II)设 ,求数列{cncn+2}的前n项和为Tn .
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)是R上的偶函数,当x1 , x2∈(0,+∞)时,都有(x1﹣x2)[f(x1)﹣f(x2)]<0.设 ,则( )
A.f(a)>f(b)>f(c)
B.f(b)>f(a)>f(c)
C.f(c)>f(a)>f(b)
D.f(c)>f(b)>f(a)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆C与x轴相切于点T(2,0),与y轴的正半轴相交于A,B两点(A在B的上方),且AB=3.
(1)求圆C的方程;
(2)直线BT上是否存在点P满足PA2+PB2+PT2=12,若存在,求出点P的坐标,若不存在,请说明理由;
(3)如果圆C上存在E,F两点,使得射线AB平分∠EAF,求证:直线EF的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为 ρcos(θ+ )﹣1=0,曲线C的参数方程是 (t为参数).
(1)求直线l和曲线C的普通方程;
(2)设直线l与曲线C交于A,B两点,求 + .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下面四个推理:
①由“若是实数,则”推广到复数中,则有“若是复数,则”;
②由“在半径为R的圆内接矩形中,正方形的面积最大”类比推出“在半径为R的球内接长方体中,正方体的体积最大”;
③以半径R为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;
④由“直角坐标系中两点、的中点坐标为”类比推出“极坐标系中两点、的中点坐标为”.
其中,推理得到的结论是正确的个数有( )个
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来大气污染防治工作得到各级部门的重视,某企业在现有设备下每日生产总成本(单位:万元)与日产量(单位:吨)之间的函数关系式为,现为了配合环境卫生综合整治,该企业引进了除尘设备,每吨产品除尘费用为万元,除尘后当日产量时,总成本.
(1)求的值;
(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】乡大学生携手回乡创业,他们引进某种果树在家乡进行种植试验.他们分别在五种不同的试验田中种植了这种果树100株并记录了五种不同的试验田中果树的死亡数,得到如下数据:
试验田 | 试验田1 | 试验田2 | 试验田3 | 试验田4 | 试验田5 |
死亡数 | 23 | 32 | 24 | 29 | 17 |
(Ⅰ)求这五种不同的试验田中果树的平均死亡数;
(Ⅱ)从五种不同的试验田中随机取两种试验田的果树死亡数,记为x,y,用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
在平面直角坐标系中,曲线的参数方程是(为参数,),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程是,等边的顶点都在上,且点,,依逆时针次序排列,点的极坐标为.
(1)求点,,的直角坐标;
(2)设为上任意一点,求点到直线距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,
已知圆和圆.
(1)若直线过点,且被圆截得的弦长为,
求直线的方程;(2)设P为平面上的点,满足:
存在过点P的无穷多对互相垂直的直线和,
它们分别与圆和圆相交,且直线被圆
截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com