精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2数学公式
(Ⅰ)求函数f(x)的最大值,并写出f(x)取最大值时x的取值集合;
(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=数学公式b+c=2,求实数a的最小值.

解:(Ⅰ)函数f(x)=2=(1+cos2x)-(sin2xcos-cos2xsin
=1+sin2x+=1+sin(2x+).
∴函数f(x)的最大值为2.
要使f(x)取最大值,则sin(2x+)=1,∴2x+=2kπ+(k∈Z)
∴x=kπ+(k∈Z).
故x的取值集合为{x|x=kπ+(k∈Z)}.
(Ⅱ)由题意,f(A)=sin(2A+)+1=,化简得sin(2A+)=
∵A∈(0,π),∴2A+,∴2A+=,∴A=
在△ABC中,根据余弦定理,得=(b+c)2-3bc.
由b+c=2,知,即a2≥1.
∴当b=c=1时,实数a取最小值1.
分析:(Ⅰ)利用二倍角公式及辅助角公式,化简函数,即可求得函数的最大值,从而可得f(x)取最大值时x的取值集合;
(Ⅱ)利用f(A)=sin(2A+)+1=,求得A,在△ABC中,根据余弦定理,利用b+c=2,及,即可求得实数a的最小值.
点评:本题考查三角函数的化简,考查函数的最值,考查余弦定理的运用,考查基本不等式,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案