精英家教网 > 高中数学 > 题目详情
8.在△ABC中,若b=acosC,试判断该三角形的形状.

分析 直接利用正弦定理化边为角,再展开两角和的正弦得答案.

解答 解:在△ABC中,由b=acosC,得sinB=sinAcosC,
即sin(A+C)=sinAcosC,展开等式左边得:sinAcosC+cosAsinC=sinAcosC,
∴cosAsinC=0,
∵sinC≠0,∴cosA=0,
又0<A<π,∴A=$\frac{π}{2}$.
故△ABC是以角A为直角的直角三角形.

点评 本题考查利用正弦定理和余弦定理判断三角形的形状,在涉及三角形的形状判断问题时,要么利用正弦定理化边为角,要么利用余弦定理化角为边,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.讨论函数f(x)=$\frac{\sqrt{1{6}^{x}+1}+{2}^{x}}{{2}^{x}}$的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解不等式:|x+3|>2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数列{an}的前4项依次是0.5,0.55,0.555,0.5555,则数列{an}的通项公式是${a}_{n}=\frac{5}{9}(1-\frac{1}{1{0}^{n}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设不等式($\frac{1}{2}$)${\;}^{{x}^{2}-x}$>1的解集为M.
(1)求集合M;
(2)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A(-2,-2),B(-2,6),C(4,-2),点P在圆x2+y2=4上运动,求|PA|2+|PB|2+|PC|2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)图象的一条对称轴为x=$\frac{π}{12}$,则要得到函数F(x)=f′(x)-f(x+$\frac{π}{12}$)的图象,只需把函数f(x)的图象(  )
A.向左平移$\frac{π}{6}$个单位,纵坐标伸长为原来的$\sqrt{3}$倍
B.向右平移$\frac{π}{6}$个单位,纵坐标伸长为原来的$\sqrt{3}$倍
C.向左平移$\frac{π}{3}$个单位,纵坐标伸长为原来的$\sqrt{3}$倍
D.向右平移$\frac{π}{3}$个单位,纵坐标伸长为原来的$\sqrt{3}$倍

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若集合A={x|x=3m-2,m∈Z},B={x|x=3m+1,m∈Z},C={x|x=6m+1,m∈Z},则集合A、B、C的关系是C?B=A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数y=f(x),x∈l,若存在x0∈l,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0∈l,使得f(f(x0))=x0,则称x0为函数y=f(x)的稳定点,则下列结论中正确的是①②⑤(填上所有正确结论的序号).
①-$\frac{1}{2}$、1是函数f(x)=2x2-1有两个不动点;
②若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;
③若x0为函数y=f(x)的稳定点,则x0必为函数y=f(x)的不动点;
④函数f(x)=2x2-1共有三个稳定点;
⑤f(x)=$\sqrt{{e}^{x}+x}$的不动点与稳定点相同.

查看答案和解析>>

同步练习册答案