精英家教网 > 高中数学 > 题目详情
1.已知向量$\overrightarrow{a}$=(sin2x,cos2x),$\overrightarrow{b}$=(2cos2$\frac{θ}{2}$-1,sinθ),且函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$在x=$\frac{2π}{3}$时取得最小值(其中0<θ<$\frac{π}{2}$)
(1)求θ的值;
(2)设α∈[$\frac{π}{2}$,π],β∈[0,$\frac{π}{2}$],f(α+$\frac{π}{6}$)=-$\frac{1}{3}$,f($\frac{β}{2}$-$\frac{7π}{12}$)=-$\frac{2\sqrt{2}}{3}$,求cos(α-β)的值.

分析 (1)利用数量积运算性质与和差公式可得函数f(x)=sin(2x+θ),根据函数f(x)在x=$\frac{2π}{3}$时取得最小值(其中0<θ<$\frac{π}{2}$),可得$sin(\frac{4π}{3}+θ)$=-1,解出即可.
(2)f(x)=$sin(2x+\frac{π}{6})$.由于f(α+$\frac{π}{6}$)=-$\frac{1}{3}$,f($\frac{β}{2}$-$\frac{7π}{12}$)=-$\frac{2\sqrt{2}}{3}$,可得cos2α=-$\frac{1}{3}$=2cos2α-1,sinβ=$\frac{2\sqrt{2}}{3}$.由于α∈[$\frac{π}{2}$,π],β∈[0,$\frac{π}{2}$],可得cosα,sinα,cosβ.再利用和差公式即可得出.

解答 解:(1)函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=sin2xcosθ+cos2xsinθ=sin(2x+θ),
∵函数f(x)在x=$\frac{2π}{3}$时取得最小值(其中0<θ<$\frac{π}{2}$),
∴$sin(\frac{4π}{3}+θ)$=-1,
解得$\frac{4π}{3}+θ=\frac{3π}{2}$,
解得θ=$\frac{π}{6}$.
(2)f(x)=$sin(2x+\frac{π}{6})$.
f(α+$\frac{π}{6}$)=-$\frac{1}{3}$,f($\frac{β}{2}$-$\frac{7π}{12}$)=-$\frac{2\sqrt{2}}{3}$,
∴cos2α=-$\frac{1}{3}$=2cos2α-1,sinβ=$\frac{2\sqrt{2}}{3}$.
∵α∈[$\frac{π}{2}$,π],β∈[0,$\frac{π}{2}$],
∴cosα=$-\frac{\sqrt{3}}{3}$,sinα=$\frac{\sqrt{6}}{3}$;cosβ=$\frac{1}{3}$.
∴cos(α-β)=cosαcosβ+sinαsinβ
=$-\frac{\sqrt{3}}{3}×\frac{1}{3}$+$\frac{\sqrt{6}}{3}×\frac{2\sqrt{2}}{3}$
=$\frac{\sqrt{3}}{3}$.

点评 本题考查了向量数量积的运算性质、和差公式、倍角公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知x>3,求证:$\frac{4}{x-3}$+x≥7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的顶点A(1,0,1),B(2,2,2),C(0,2,3),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“m=-2”是“复数m2+m-2+(m2-1)i”表示纯虚数的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{2,x≥0}\\{-x+2,x<0}\end{array}\right.$,则满足不等式f(3-x2)<f(2x)的x的取值范围为(-3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.y=${(m{x}^{2}+4x+m+2)}^{-\frac{1}{4}}$+(x2-mx+1)的定义域是全体实数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果向量$\overrightarrow{AA′}$=$\overrightarrow{a}$,$\overrightarrow{BB′}$=$\overrightarrow{b}$,那么$\overrightarrow{a}$=$\overrightarrow{b}$是四点A、A′、B、B′构成平行四边形的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要的条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,若B=30°,AB=2,AC=2,则△ABC的面积$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=(2x-3)3的导数是(  )
A.3(2x-3)B.6xC.6(2x-3)D.6(2x-3)2

查看答案和解析>>

同步练习册答案