精英家教网 > 高中数学 > 题目详情
(2012•包头三模)设x,y满足线性约束条件
x-2y+3≥0
2x-3y+4≤0
y≥0
,若目标函数z=ax+by(其中a>0,b>0)的最大值为3,则
1
a
+
2
b
的最小值为
3
3
分析:由约束条件作出可行域,并找出目标函数取得最大值时的条件,进而利用基本不等式的性质即可求出.
解答:解:由x,y满足线性约束条件
x-2y+3≥0
2x-3y+4≤0
y≥0
,作出可行域:
联立
x-2y+3=0
2x-3y+4=0
解得C(1,2).
由可行域可知:当目标函数经过点C时z取得最大值3,
∴a+2b=3(a>0,b>0).
1
a
+
2
b
=
1
3
(a+2b)(
1
a
+
2
b
)
=
1
3
(5+
2b
a
+
2a
b
)

1
3
(5+4
b
a
×
a
b
)
=3.当且仅当
b
a
=
a
b
,a+2b=3,a>0,
b>0,即a=b=1时取等号.
因此
1
a
+
2
b
的最小值为3.
故答案为3.
点评:熟练掌握线性规划的有关内容及基本不等式的性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•包头三模)函数y=sin(ωx+φ)(ω>0且|φ|<
π
2
)
在区间[
π
6
3
]
上单调递减,且函数值从1减小到-1,那么此函数图象与y轴交点的纵坐标为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头三模)若曲线y=x2在点(a,a2)(a>0)处的切线与两个坐标轴围成的三角形的面积为2,则a等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头三模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,证明:直线AB过定点(-
1
2
 , -2
).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头三模)设函数f(x)=xex,g(x)=ax2+x
(I)若f(x)与g(x)具有完全相同的单调区间,求a的值;
(Ⅱ)若当x≥0时恒有f(x)≥g(x),求a的取值范围.

查看答案和解析>>

同步练习册答案