精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A、B、C所对的边分别为a,b,c,若a=4,b=4
3
,A=30o
则C=(  )
A.60°或120°B.30°或150°C.30°或90°D.60°或90°
a=4,b=4
3
,A=30o

∴由余弦定理,得a2=b2+c2-2bccos30°,即16=48+c2-8c
化简整理,得c2-12c+32=0,解之得c=4或8
①当c=4时,由
c
sinC
=
a
sinA
得sinC=
csinA
a
=
1
2
,可得C=30°(舍去150°);
②当c=8时,由
c
sinC
=
a
sinA
得sinC=
csinA
a
=1,可得C=90°.
综上所述,角C=30°或90°
故选:C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对边长分别为a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,则b=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=3
2
,则B的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知B=60°,不等式x2-4x+1<0的解集为{x|a<x<c},则b=
13
13

查看答案和解析>>

同步练习册答案