精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)= 的定义域是(
A.[4,+∞)
B.(﹣∞,4]
C.(3,+∞)
D.(3,4]

【答案】D
【解析】解:要使函数的解析式有意义 自变量x须满足:log0.5(x﹣3)≥0且x﹣3>0,
∴0<x﹣3≤1
解得3<x≤4
故函数f(x)的定义域为(3,4]
故选:D
【考点精析】本题主要考查了函数的定义域及其求法的相关知识点,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,设动点P到定点F(1,0)的距离与到定直线l:x=﹣1的距离相等,记P的轨迹为Γ.又直线AB的一个方向向量 且过点(1,0),AB与Γ交于A、B两点,求|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的二次方程x2+2mx+2m+1=0.
(Ⅰ)若方程有两根,其中一根在区间(﹣1,0)内,另一根在区间(1,2)内,求m 的取值范围.
(Ⅱ)若方程两根均在区间(0,1)内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x2﹣3x+3)ex的定义域为[﹣2,t],设f(﹣2)=m,f(t)=n.
(1)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;
(2)求证:m<n;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.

(1)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(2)求△EMN的面积S(平方米)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x﹣1+a,g(x)=bf(1﹣x),其中a,b∈R,若关于x的不等式f(x)≥g(x)的解的最小值为2,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的周长为 +1,且sinA+sinB= sinC (I)求边AB的长;
(Ⅱ)若△ABC的面积为 sinC,求角C的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1<2x﹣1<7},集合B={x|x2﹣2x﹣3<0}.
(1)求A∩B;
(2)求R(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1 , ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.请建立适当的坐标系,求解下列问题: (Ⅰ)求证:异面直线A1D与BC互相垂直;
(Ⅱ)求二面角(钝角)D﹣A1C﹣A的余弦值.

查看答案和解析>>

同步练习册答案