精英家教网 > 高中数学 > 题目详情
(2013•怀化二模)函数y=
1
x
+
1-x2
的定义域为(  )
分析:由函数的解析式可得 
x≠0
1-x2≥0
,解得x的范围,即可得到函数的定义域.
解答:解:∵函数y=
1
x
+
1-x2
,∴
x≠0
1-x2≥0
,解得-1≤x<0,或 0<x≤1,
故选D.
点评:本题主要考查求函数的定义域的方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•怀化二模)已知m,n为不同的直线,α,β为不同的平面,给出下列四个命题:
①若m⊥α,n?α,则m⊥n;       
②若m⊥α,α⊥β,则m∥β;
③若m?α,n?α,m∥β,n∥β,则α∥β;
④若α⊥β,α∩β=m,n?α,n⊥m,则n⊥β.
其中所有正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化二模)曲线f(x)=x3+x-2的一条切线平行于直线4x-y-1=0,则除切点外切线与曲线的另一交点坐标可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化二模)已知角α,β的顶点在坐标原点,始边与x轴的正半轴重合,α,β∈(0,π),角β的终边与单位圆交点的横坐标是-
5
13
,角α+β的终边与单位圆交点的纵坐标是
3
5
,则cosα=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化二模)在平面直角坐标系xoy中,已知椭圆x2+
y2b2
=1(0<b<1)的左焦点为F,左、右顶点分别为A,C,上顶点为B,过B,C,F三点作圆P.
(Ⅰ)若线段CF是圆P的直径,求椭圆的离心率;
(Ⅱ)若圆P的圆心在直线x+y=0上,求椭圆的方程;
(Ⅲ)若直线y=x+t交(Ⅱ)中椭圆于M,N,交y轴于Q,求|MN|•|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化二模)tan3的值为(  )

查看答案和解析>>

同步练习册答案