精英家教网 > 高中数学 > 题目详情
已知等差数列{an}中,a5+a7+a9=21,则a7的值是(  )
A、7B、9C、11D、13
考点:等差数列的性质,等差数列的通项公式
专题:等差数列与等比数列
分析:直接利用等差数列的性质结合已知得答案.
解答: 解:在等差数列{an}中,
∵a5+a7+a9=21,
∴3a7=21,得a7=7.
故选:A.
点评:本题考查了等差数列的通项公式,考查了等差数列的性质,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=-x2+2ax+5在区间(4,+∞)上是减函数,则a的取值范围是(  )
A、(-∞,4]
B、(-∞,4)
C、[4,+∞)
D、(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线C:y2=2px上的点M(4,-4)作倾斜角互补的两条直线MA、MB,分别交抛物线于A、B两点.
(1)若|AB|=4
10
,求直线AB的方程;
(2)不经过点M的动直线l交抛物线C于P、Q两点,且以PQ为直径的圆过点M,那么直线l是否过定点?如果是,求定点的坐标;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求使不等式4x>32成立的x的集合;
(2)解方程:log4(3x-1)=log4(x-1)+log4(3+x).

查看答案和解析>>

科目:高中数学 来源: 题型:

从1、2、3、4中任取两个不同的数字构成一个两位数,则这个两位数大于20的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+2,x≥0
3x,x<0
,若f(x)=11,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
满足|
a
|=1,
b
=(3,4),且λ
a
+
b
=0(λ∈R),则|λ|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

把十进制数11化为二进制数的结果是(  )
A、1011(2)
B、1101(2)
C、1110(2)
D、1111(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}前n项和Sn,满足S20=S40,下列结论正确的是(  )
A、S30是Sn中的最大值
B、S20是Sn中的最小值
C、S30=0
D、S60=0

查看答案和解析>>

同步练习册答案