精英家教网 > 高中数学 > 题目详情
已知f(x)=mx(m为常数,m>0且m≠1).设f(a1),f(a2),…,f(an),…(n∈N*)是首项为m2,公比为m的等比数列.
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)若bn=an•f(an),且数列{bn}的前n项和为Sn,当m=2时,求Sn
分析:(I)根据等比数列的通项公式,可得f(an)=m2•mn-1=mn+1,从而可得an=n+1,进而可证数列{an}是以2为首项,1为公差的等差数列;
(II)当m=2时,bn=(n+1)•2n+1,利用错位相减法可求数列的和;
解答:证明:(I)由题意f(an)=m2•mn-1=mn+1
man=mn+1
∴an=n+1,(2分)
∴an+1-an=1,
∴数列{an}是以2为首项,1为公差的等差数列.
解:(II)由题意bn=an•f(an)=(n+1)•mn+1
当m=2时,bn=(n+1)•2n+1
∴Sn=2•22+3•23+4•24+…+(n+1)•2n+1 ①
①式两端同乘以2,得
2Sn=2•23+3•24+4•25+…+n•2n+1+(n+1)•2n+2 ②
②-①并整理,得
Sn=-2•22-23-24-25-…-2n+1+(n+1)•2n+2
=-22-(22+23+24+…+2n+1)+(n+1)•2n+2
=-22-
2 2(1-2n)
1-2
+(n+1)•2n+2
=-22+22(1-2n)+(n+1)•2n+2
=2n+2•n.
点评:本题考查等差数列与等比数列的综合,考查数列的通项与求和,考查恒成立问题,确定数列的通项,掌握求和公式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=mx(x-2m)(x+m+3),g(x)=2x-2,若?x∈R,f(x)<0或g(x)<0,则m的取值范围是
(-4,0)
(-4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)已知f (x)=mx(m为常数,m>0且m≠1).设f (a1),f (a2),…,f (an),…(n∈N)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an f (an),且数列{bn}的前n项和为Sn,当m=3时,求Sn
(3)若cn=f(an)lgf (an),问是否存在m,使得数列{cn}中每一项恒不小于它后面的项?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=mx(m为常数,m>0且m≠1).设f(a1),f(a2),…f(an)…(n∈N*?)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an•f(an),且数列{bn}的前n项和为Sn,当m=2时,求Sn
(3)若cn=f(an)•lgf(an),问是否存在m,使得数列{cn}中每一项恒小于它后面的项?若存在,求出m的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f (x)=mx(m为常数,m>0且m≠1).设f (a1),f (a2),…,f (an),…(n∈N)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an f (an),且数列{bn}的前n项和为Sn,当m=3时,求Sn
(3)若cn=f(an)lgf (an),问是否存在m,使得数列{cn}中每一项恒不小于它后面的项?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案