精英家教网 > 高中数学 > 题目详情

【题目】已知函数是定义域在上的奇函数,且

1)用定义证明:函数上是增函数,

2)若实数满足,求实数的范围.

【答案】(1)证明见解析(2)

【解析】

1)根据求得,根据单调性的定义,计算,由此证得函数在上为增函数.

2)利用函数的奇偶性化简,再利用函数的单调性结合函数的定义域列不等式组,解不等式组求得的取值范围.

1)∵函数是定义域为(-11)上的奇函数,

f0=0,∴b=0

任取x1x2∈(-11),且x1x2

fx1-fx2=-

==

a0-1x1x21

x1-x201-x1x201+01+0

∴函数fx)在(-11)上是增函数.

2)∵f2t-1+ft-1)<0,∴f2t-1)<-ft-1),

∵函数是定义域为(-11)上的奇函数,且a0

f2t-1)<f1-t),

∵函数fx)在(-11)上是增函数,

解得

故实数t的范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是等差数列,是各项都为正数的等比数列,且.

(1)求,的通项公式;

(2)设,若成等差数列(为正整数且),求的值;

(3)设为数列的前项和,是否存在实数,使得对一切均成立?若存在,求出的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义域为R上的奇函数,当x0时,fx=x2+2x

1)求fx)的解析式;

2)若不等式ft﹣2+f2t+1)>0成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图1和图2中所有的正方形都全等,图1中的正方形放在图2中的①②③④某一位置,所组成的图形能围成正方体的概率是( )

A. B. C. D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,),以为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地通过市场调查得到西红柿种植成本(单位:元/千克)与上市时间(单位:天)的数据如下表:

时间

种植成本

1)根据上表数据,发现二次函数能够比较准确描述的变化关系,请求出函数的解析式;

2)利用选取的函数,求西红柿最低种植成本及此时的上市天数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对任意实数xy恒有,当x>0时,f(x)<0,且.

(1)判断的奇偶性;

(2)在区间[-3,3]上的最大值;

(3)对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若对任意均有成立,求实数的取值范围;

(2)设直线与曲线和曲线相切,切点分别为,其中.

①求证:

②当时,关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,且对任意,,且当.

1)证明:是奇函数;

2)证明:上是减函数;

3)求在区间上的最大值和最小值.

查看答案和解析>>

同步练习册答案