【题目】在平面直角坐标系
中,曲线
过点
,其参数方程为
(
为参数,
),以
为极点,
轴非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)求已知曲线
和曲线
交于
两点,且
,求实数
的值.
科目:高中数学 来源: 题型:
【题目】在
中,
分别为内角
所对的边,且满足
,
(I)求C的大小;
(II)现给出三个条件:①
;②
;③
.试从中选择两个可以确定
的条件,写出你的选择并以此为依据求
的面积S.(只写出一种情况即可)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:
售出水量 | 7 | 6 | 6 | 5 | 6 |
收入 | 165 | 142 | 148 | 125 | 150 |
学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.
(1)若
与
成线性相关,则某天售出9箱水时,预计收入为多少元?
(2)假设甲、乙、丙三名学生均获奖,且各自获一等奖和二等奖的可能性相同,求三人获得奖学金之和不超过1000元的概率.
附:回归方程
,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的左右焦点分别为
,
且
关于直线
的对称点
在直线
上.
(1)求椭圆的离心率;
(2)若
的长轴长为
且斜率为
的直线
交椭圆于
,
两点,问是否存在定点
,使得
,
的斜率之和为定值?若存在,求出所有满足条件的
点坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com