分析 (1)利用等差数列的通项公式与求和公式及其性质即可得出.
(2)利用“裂项求和”方法即可得出.
解答 解:(1)a3+a7=22=2a5,∴a5=11.
∴公差d=11-9=2,a1+3d=9,解得a1=3.
∴an=2n+1,
${S_n}=\frac{n(3+2n+1)}{2}={n^2}+2n$.
(2)${b_n}=\frac{1}{(2n+1)(2n+3)}$${b_n}=\frac{1}{2}({\frac{1}{2n+1}-\frac{1}{2n+3}})$,
∴${T_n}=\frac{1}{2}({\frac{1}{3}-\frac{1}{2n+3}})=\frac{n}{3(2n+3)}$.
点评 本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{1}{14},\frac{1}{3})$ | B. | $(\frac{1}{14},\frac{1}{3}]$ | C. | $(\frac{1}{3},2]$ | D. | $[\frac{1}{3},2)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (-1,0) | C. | (-2,-1)∪(-1,0) | D. | (-2,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 19 | B. | 38 | C. | 51 | D. | 64 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 20 | 40 | 80 | 50 | 10 | |
| 男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 45 | 75 | 90 | 60 | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com