精英家教网 > 高中数学 > 题目详情
5.已知函数y=f(x),若存在零点x0,则函数y=f(x)可以写成:f(x)=(x-x0)g(x).
例如:对于函数f(x)=x3-2x2+3,-1是它的一个零点,则f(x)=(x+1)g(x)(这里g(x)=x2-3x+3).若函数f(x)=x3+(a-2)x2+(b-2a)x+c存在零点x=2.
(1)若f(0)=-2,且函数y=f(x)在区间[-2,2]上的最大值为0,求实数a的取值范围;
(2)已知函数y=f(x)存在零点x1∈[-1,0],且|f(1)|≤1,求实数b的取值范围.

分析 (1)求出g(x)=x2+ax+1,令g(x)≥0在区间[-2,2]上恒成立,列不等式组得出a的范围;
(2)求出g(x)=x2+ax+b,根据条件列出不等式组,作出平面区域,根据线性规划知识求出b的范围.

解答 解:(1)∵f(0)=-2,∴c=-2,
设f(x)=(x-2)g(x),则g(x)为二次函数,不妨设g(x)=(x2+mx+n),
则f(x)=(x-2)(x2+mx+n)=x3+(m-2)x2+(n-2m)x-2n,
∴$\left\{\begin{array}{l}{m-2=a-2}\\{n-2m=b-2a}\\{-2n=-2}\end{array}\right.$,解得$\left\{\begin{array}{l}{m=a}\\{n=1}\end{array}\right.$,
∴g(x)=x2+ax+1,
∵当x∈[-2,2]时,f(x)≤0,且x-2≤0,
∴g(x)=x2+ax+1≥0在[-2,2]上恒成立,
∴△=a2-4≤0,或$\left\{\begin{array}{l}{-\frac{a}{2}≤-2}\\{5+2a≥0}\\{5-2a≥0}\end{array}\right.$,或$\left\{\begin{array}{l}{-\frac{a}{2}≥2}\\{5+2a≥0}\\{5-2a≥0}\end{array}\right.$,
解得-2≤a≤2.
(2)设f(x)=(x-2)(x2+mx+n)=x3+(m-2)x2+(n-2m)x-2n,
则$\left\{\begin{array}{l}{m-2=a-2}\\{n-2m=b-2a}\\{-2n=c}\end{array}\right.$,∴$\left\{\begin{array}{l}{m=a}\\{n=b=-\frac{c}{2}}\end{array}\right.$,∴g(x)=x2+ax+b,
∵|f(1)|<1,-1≤1+a+b≤1,即-2≤a+b≤0,
∵f(x)存在零点x1∈[-1,0],∴g(x)在[-1,0]上存在零点x1
①若a2-4b=0,即b=$\frac{{a}^{2}}{4}$≥0,
且-1≤-$\frac{a}{2}$≤0,∴0≤a≤2,
∴a+b≥0,又-2≤a+b≤0,
∴a=b=0,
②若a2-4b>0,
∵g(x)在[-1,0]上存在零点x1
∴g(-1)g(0)≤0,即b(1-a+b)≤0,
故而a,b满足的约束条件为:$\left\{\begin{array}{l}{-2≤a+b≤0}\\{{a}^{2}-4b>0}\\{b(1-a+b)≤0}\end{array}\right.$,
作出约束条件表示的平面区域如图所示:

联立方程组$\left\{\begin{array}{l}{1-a+b=0}\\{a+b=-2}\end{array}\right.$得A(-$\frac{1}{2}$,-$\frac{3}{2}$).
∴-$\frac{3}{2}$≤b≤0.
综上,-$\frac{3}{2}$≤b≤0.

点评 本题考查了二次函数的性质,函数零点与线性规划,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=2$\sqrt{2}$cos($\frac{π}{4}$+θ).
(I)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于M,N两点,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A、B、C的对边分别为a,b,c,且$\frac{c}{cosC}$=$\frac{a+b}{cosA+cosB}$.
(1)求角A的大小;
(2)若△ABC的外接圆直径为1,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}中,a2=4,a4+a7=15. 
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}-2}$+2n,求b1+b2+b3+…+b9的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={x|-1<x<3},B={y|y=2x,x∈[0,2]},则A∩B=(  )
A.[0,2]B.(1,3)C.[1,3)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=lnx+$\frac{1}{2}$ax2-(a+1)x+1在x=1处取得极小值,则实数a的取值范围是a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)满足f(log3x)=x-log3(x2).
(1)求函数f(x)的解析式;
(2)当n∈N*时,试比较f(n)与n3的大小,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足4an=an-1-3(n≥2且n∈N*),且a1=-$\frac{3}{4}$,设bn$+2=3lo{g}_{\frac{1}{4}}$(an+1),n∈N*,数列{cn}满足cn=(an+1)bn
(1)求证{an+1}是等比数列并求出数列{an}的通项公式;
(2)求数列{cn}的前n项和Sn
(3)对于任意n∈N*,cn≤m2-m-$\frac{1}{2}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2+4cosθ}\\{y=1+4sinθ}\end{array}\right.$(θ为参数),直线l经过定点P(3,4),倾斜角为$\frac{π}{6}$.
(Ⅰ)写出直线l的参数方程和曲线C的标准方程.
(Ⅱ)设直线l与曲线C相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

同步练习册答案