精英家教网 > 高中数学 > 题目详情
2.执行如图的程序框图,若输入n为4,则输入S值为(  )
A.-10B.-11C.-21D.6

分析 由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.

解答 解:模拟执行程序,可得
n=4,k=2,S=0
执行循环体,不满足条件k为奇数,S=0-4=-4,k=3
不满足条件k>4,执行循环体,满足条件k为奇数,S=-4+9=5,k=4
不满足条件k>4,执行循环体,不满足条件k为奇数,S=5-16=-11,k=5
满足条件k>4,退出循环,输出S的值为-11.
故选:B.

点评 本题考查的知识点是循环结构的程序框图的应用,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知点F是椭圆T:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{5{m}^{2}}$=1(m>0)的上焦点,F1是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点.若线段FF1的中点P恰好为椭圆T与双曲线C的渐近线在第一象限内的交点,则双曲线C的离心率为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设奇函数f(x)满足3f(-2)=8+f(2),则f(-2)的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平行六面体ABCD-A1B1C1D1中,AD=1,CD=2,A1D⊥平面ABCD,AA1与底面ABCD所成角为θ(0<θ<$\frac{π}{2}$),∠ADC=2θ.
(1)求证:平面六面体ABCD-A1B1C1D1的体积V=4sin2θ,并求V的取值范围;
(2)若θ=45°,求异面直线A1C与BB1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=(a+2)x3-ax2+2x为奇函数,则曲线y=f(x)在点(-1,f(-1))处的切线方程为y=8x+4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,过点F作x轴的垂线,与双曲线及其渐近线在第一象限分别交于点A,P,若|AP|=$\frac{a}{3}$,则双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2$=1(a>0,b>0)的左、右焦点分别为F1,F2,圆心为F2且和双曲线的渐近线相切的圆与双曲线的一个交点为P.若∠F1PF2=$\frac{π}{2}$,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数).
(1)求曲线C的普通方程;
(2)若z=(2cosθ-t-2)2+($\sqrt{3}$sinθ-t+1)2,求z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.9+$\sqrt{3}$B.18+2$\sqrt{3}$C.9$\sqrt{3}$+3D.18$\sqrt{3}$+2

查看答案和解析>>

同步练习册答案