精英家教网 > 高中数学 > 题目详情

已知偶函数f(x)不恒为零,对任意x∈R,均有:x•f(x+2)=(x+2)•f(x),那么f[f(5)]的值是________.

0
分析:可根据偶函数f(x)对任意x∈R,均有:x•f(x+2)=(x+2)•f(x),对x赋值,求得f(1),f(3),f(5),再求f[f(5)]的值.
解答:∵f(x)为偶函数,对任意x∈R,均有:x•f(x+2)=(x+2)•f(x),
∴令x=-1,有-f(1)=f(-1),∴f(1)=0;再令x=1,f(3)=3f(1)=0;令x=3有:3f(5)=5f(3)=0,
∴f(5)=0;∴f[f(5)]=f(0),由x•f(x+2)=(x+2)•f(x),可得f(0)=0,
∴f[f(5)]=0.
故答案为:0.
点评:本题考查函数奇偶性的性质,着重考查学生灵活运用赋值法来转化解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知偶函数f(x)不恒为零,对任意x∈R,均有:x•f(x+2)=(x+2)•f(x),那么f[f(5)]的值是
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丰台区二模)已知偶函数f(x)(x∈R),当x∈(-2,0]时,f(x)=-x(2+x),当x∈[2,+∞)时,f(x)=(x-2)(a-x)(a∈R).
关于偶函数f(x)的图象G和直线l:y=m(m∈R)的3个命题如下:
①当a=4时,存在直线l与图象G恰有5个公共点;
②若对于?m∈[0,1],直线l与图象G的公共点不超过4个,则a≤2;
③?m∈(1,+∞),?a∈(4,+∞),使得直线l与图象G交于4个点,且相邻点之间的距离相等.
其中正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知偶函数f(x)不恒为零,对任意x∈R,均有:x•f(x+2)=(x+2)•f(x),那么f[f(5)]的值是______.

查看答案和解析>>

科目:高中数学 来源:《第1章 集合和函数概念》2010年单元测试卷(重庆市)(解析版) 题型:填空题

已知偶函数f(x)不恒为零,对任意x∈R,均有:x•f(x+2)=(x+2)•f(x),那么f[f(5)]的值是   

查看答案和解析>>

同步练习册答案