精英家教网 > 高中数学 > 题目详情
已知函数

(Ⅰ)若曲线处的切线相互平行,求的值及切线斜率;
(Ⅱ)若函数在区间上单调递减,求的取值范围;
(Ⅲ)设函数的图像C1与函数的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.
(Ⅰ);(Ⅱ) ;(Ⅲ)见解析.

试题分析:(Ⅰ)由已知条件“曲线处的切线相互平行”可知,曲线在这两处的切线的斜率相等,求出曲线的导数,根据求出的值及切线斜率;(Ⅱ)有已知条件“函数在区间上单调递减”可知,在区间上恒成立,得到,则有,依据二次函数在闭区间上的值域,求得函数在区间的值域是,从而得到;(Ⅲ)用反证法,先假设C1在点M处的切线与C2在点N处的切线平行,设,则有,分别代入函数与函数的导函数,求得①,结合P、Q两点是函数的图像C1与函数的图像C2的交点,则坐标满足曲线方程,将①化简得到,设,进行等量代换得到,存在大于1的实根,构造函数,结合导函数求得函数在区间是单调递减的,从而,得出矛盾.
试题解析:(Ⅰ)

∵在处的切线相互平行,
,即,解得
.
(Ⅱ)∵在区间上单调递减,
在区间上恒成立,
,即
,∴
.
(Ⅲ)
假设有可能平行,则存在使

不妨设
则方程存在大于1的实根,设
,∴,这与存在使矛盾.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(其中为常数);
(Ⅰ)如果函数有相同的极值点,求的值;
(Ⅱ)设,问是否存在,使得,若存在,请求出实数的取值范围;若不存在,请说明理由.
(Ⅲ)记函数,若函数有5个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)己知函数
(1)试探究函数的零点个数;
(2)若的图象与轴交于两点,中点为,设函数的导函数为, 求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数上是减函数,求实数a的最小值;
(Ⅲ)若,使)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)若曲线在它们的交点处有相同的切线,求实数的值;
(2)当时,若函数在区间内恰有两个零点,求实数的取值范围;
(3)当时,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某连锁分店销售某种商品,每件商品的成本为元,并且每件商品需向总店交元的管理费,预计当每件商品的售价为元时,一年的销售量为万件.
(1)求该连锁分店一年的利润(万元)与每件商品的售价的函数关系式;
(2)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列的前项和为,已知(n∈N*).
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:当x>0时,
(Ⅲ)令,数列的前项和为.利用(2)的结论证明:当n∈N*且n≥2时,.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的反函数为,设的图象上在点处的切线在y轴上的截距为,数列{}满足: 
(Ⅰ)求数列{}的通项公式;
(Ⅱ)在数列中,仅最小,求的取值范围;
(Ⅲ)令函数数列满足,求证:对一切n≥2的正整数都有 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数存在极值点,求实数b的取值范围;
(2)求函数的单调区间;
(3)当时,令(),()为曲线y=上的两动点,O为坐标原点,能否使得是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由

查看答案和解析>>

同步练习册答案