精英家教网 > 高中数学 > 题目详情
已知函数
(1)若函数存在极值点,求实数b的取值范围;
(2)求函数的单调区间;
(3)当时,令(),()为曲线y=上的两动点,O为坐标原点,能否使得是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由
(1);(2)当时,,函数的单调递增区间为
时,,函数的单调递减区间为,单调递增区间为.
(3)对任意给定的正实数,曲线上总存在两点,满足条件.

试题分析:(1)求,要函数由极值,也就是有实数解,由于是关于的二次函数,则由便求得的取值范围;(2)求,需要对实数进行分类讨论,,在这两种情况下分别求出函数的单调区间,注意分类讨论问题,应弄清对哪个字母分类讨论,分类应不重不漏;(3)是探索性问题,要说明存在是以O为直角顶点的直角三角形,
且斜边中点在y轴上,需要证明该方程有解,要对进行分类讨论分别说明.
试题解析:(1),若存在极值点,
有两个不相等实数根.
所以,解得 .
(2)
时,,函数的单调递增区间为
时,,函数的单调递减区间为,单调递增区间为.
时,
假设使得是以O为直角顶点的直角三角形,且斜边中点在y轴上.
.
不妨设.故,则.
该方程有解,
时,,代入方程
,而此方程无实数解;
时,
时,,代入方程,即
,则上恒成立.
上单调递增,从而,则值域为.
∴当时,方程有解,即方程有解.
综上所述,对任意给定的正实数,曲线上总存在两点,使得是以O为直角顶点的直角三角形,且斜边中点在y轴上.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数

(Ⅰ)若曲线处的切线相互平行,求的值及切线斜率;
(Ⅱ)若函数在区间上单调递减,求的取值范围;
(Ⅲ)设函数的图像C1与函数的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为自然对数的底数),为常数),是实数集上的奇函数.
(1)求证:
(2)讨论关于的方程:的根的个数;
(3)设,证明:为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)求函数的单调递减区间;
(II)若上恒成立,求实数的取值范围;
(III)过点作函数图像的切线,求切线方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于[1,2],
[0,1],使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,.
(Ⅰ)当时,求曲线处的切线的方程;
(Ⅱ)如果存在,使得成立,求满足上述条件的最大整数;
(Ⅲ)如果对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且.
(1)判断的奇偶性并说明理由;
(2)判断在区间上的单调性,并证明你的结论;
(3)若对任意实数,有成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知可导函数的导函数满足,则不等式的解集是   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线在点处的切线与两条坐标轴围成的三角形的面积为54,则(   )
A.3B.6 C.9D.18

查看答案和解析>>

同步练习册答案