精英家教网 > 高中数学 > 题目详情
已知函数
(Ⅰ)若上是减函数,求的取值范围;
(Ⅱ)函数是否既有极大值又有极小值?若存在,求的取值范围;若不存在,请说明理由.
(Ⅰ)≤3(Ⅱ)当a>2既有极大值又有极小值
(Ⅰ)=                                  …………1分
上为减函数,∴恒成立.   ……3分
恒成立.设,则=
>4,∴,∴上递减,       ………5分
∴g() >g()=3,∴≤3.                                      ………6分
(Ⅱ)若既有极大值又有极小值,则首先必须=0有两个不同正根
有两个不同正根。                          …………7分

∴当>2时,=0有两个不等的正根                   …………10分
不妨设,由=-)=-知:
<0,>0,<0,
∴当a>2既有极大值又有极小值
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知,函数处取得极值,曲线过原点和点.若曲线在点处的切线与直线的夹角为,且直线的倾斜角(Ⅰ)求的解析式;(Ⅱ)若函数在区间上是增函数,求实数的取值范围;(Ⅲ)若,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

的最大值为M。
(1)当时,求M的值。
(2)当取遍所有实数时,求M的最小值
(以下结论可供参考:对于,当同号时取等号)
(3)对于第(2)小题中的,设数列满足,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,求函数f(x)的单调区间及其极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
(1)若h(x)=f(x)-g(x)存在单调增区间,求a的取值范围;
(2)是否存在实数a>0,使得方程在区间内有且只有两个不相等的实数根?若存在,求出a的取值范围?若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(a∈R).
(Ⅰ)当时,求的极值;
(Ⅱ)当时,求单调区间;
(Ⅲ)若对任意,恒有
成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象过(-1,1)点,其反函数的图象过(8,2)点。
(1)求a,k的值;
(2)若将的图象向在平移两个单位,再向上平移1个单位,就得到函数的图象,写出的解析式;
(3)若函数的最小值及取最小值时x的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的两个极值点,
(1)求的取值范围;
(2)若,对恒成立。求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)若的取值范围;
(2)若的图象与的图象恰有3个交点?若存在求出的取值范围;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案