精英家教网 > 高中数学 > 题目详情
数列,,,…的前n项和Sn=______________.

+1-

解析:an=n+,

∴Sn=+++…+

=(1+)+(2+)+(3+)+…+(n+)

=(1+2+3+…+n)+(++…+)

=

=+1-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a2,a7,a22成等比数列.
(1)求数列{an}的通项公式;
(2)求数列{
1Sn
}
的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为数列{an}的前n项和,Sn=λan-1(
1
2
≤λ≤2
且λ≠1,n∈N*).
(1)试判断数列{an}是否为等比数列,若不是,说明理由;若是,求数列{an}的公比f(λ)的取值范围;
(2)当λ=2时,数列{bn}满足bn+1=an+bn(n∈N*)且b1=3,若不等式 log2(bn-2)<
3
16
n2+t
对任意n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[0,1],且同时满足:
(1)对任意x∈[0,1],总有f(x)≥2;
(2)f(1)=3
(3)若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-2.
( I)求f(0)的值;
( II)求f(x)的最大值;
( III)设数列{an}的前n项和为Sn,且满足Sn=-
1
2
(an-3),n∈N*
.求证:f(a1)+f(a2)+f(a3)+…+f(an)≤
3
2
+2n-
1
3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx(a≠0)的导函数f'(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式及Sn的最大值;
(2)令bn=
2an
,其中n∈N*,求{nbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(Ⅰ)证明:数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列.
(Ⅱ)设(Ⅰ)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项公式及Tn关于n的表达式.
(Ⅲ)记bn=log(1+2an)Tn,求数列{bn}的前n项之和Sn,并求使Sn>2010的n的最小值.

查看答案和解析>>

同步练习册答案