精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+bx(a≠0)的导函数f'(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式及Sn的最大值;
(2)令bn=
2an
,其中n∈N*,求{nbn}的前n项和.
分析:(1)先确定函数y=f(x)的解析式,利用点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上,求出Sn,进而可求数列{an}的通项公式及Sn的最大值;
(2)先确定{nbn}的通项,利用错位相减法可求前n项和.
解答:解:(1)∵函数f(x)=ax2+bx(a≠0)的导函数f'(x)=-2x+7,
∴f(x)=-x2+7x
∵点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上
Sn=-n2+7n
∴n≥2时,an=Sn-Sn-1=-2n+8,
Sn=-n2+7n=-(n-
7
2
)2+
49
4

∴n=3或4时,Sn的最大值为12;
(2)bn=
2an
=2-n+4,∴nbn=n•2-n+4=16n•
1
2n

∴{nbn}的前n项和为Sn=16(1•
1
2
+2•
1
22
+…+n•
1
2n

1
2
Sn=16[1•
1
22
+…+(n-1)•
1
2n
+n•
1
2n+1
]
∴两式相减可得
1
2
Sn=16(
1
2
+
1
22
+…+
1
2n
-n•
1
2n+1
)=16(1-
1
2n
-n•
1
2n+1

∴Sn=32(1-
1
2n
-n•
1
2n+1
点评:本题考查数列与函数的关系,考查数列的通项与最值,考查数列的求和,正确求出数列的通项是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案