分析 判断角的范围,求出余弦函数值,然后利用两角和与差的三角函数化简求解即可.
解答 解:sin(θ+$\frac{π}{4}$)=$\frac{1}{3}$,θ为钝角,可知θ∈($\frac{π}{2}$,$\frac{3π}{4}$).
cos(θ+$\frac{π}{4}$)=-$\sqrt{1-si{n}^{2}(θ+\frac{π}{4})}$=-$\frac{2\sqrt{2}}{3}$.
cosθ=cos((θ+$\frac{π}{4}$)-$\frac{π}{4}$)=cos(θ+$\frac{π}{4}$)cos$\frac{π}{4}$+sin(θ+$\frac{π}{4}$)sin$\frac{π}{4}$=$-\frac{2\sqrt{2}}{3}×\frac{\sqrt{2}}{2}+\frac{1}{3}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}-4}{6}$.
点评 本题考查两角和与差的三角函数,以及同角三角函数基本关系式的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 2y=x | B. | y2=$\frac{1}{2}$(x+4) | C. | y=$\frac{1}{4}$x2-2 | D. | x2=-8y |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{4}{3}$或2 | D. | $\frac{4}{3}$或$\frac{9}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com