精英家教网 > 高中数学 > 题目详情
等差数列{an}中,a1=3,a3=9,若ak=243,则k等于(  )
A、79B、80C、81D、82
考点:等差数列的通项公式
专题:等差数列与等比数列
分析:由已知结合等差数列的通项公式求得公差,再代入等差数列的通项公式得答案.
解答: 解:在等差数列{an}中,由a1=3,a3=9,得
等差数列的公差d=
a3-a1
3-1
=
9-3
2
=3

由ak=3+3(k-1)=243,解得k=81.
故选:C.
点评:本题考查了等差数列的通项公式,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足a1=a>0,前n项和为Sn,Sn=
a
1+a
(1+an).
(1)求证:{an}是等比数列;
(2)记bn=an1n|an|(n∈N*),当a=
15
5
时是否存在正整数n,都有bn≤bm?如果存在,求出m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
e3
为同一平面内互不共线的三个单位向量,并满足
e1
+
e2
+
e3
=
0
,且向量
a
=x
e1
+
n
x
e2
+(x+
n
x
e3
 (x∈R,x≠0,n∈N+).
(Ⅰ)求
e1
e2
所成角的大小;    
(Ⅱ)记f(x)=|
a
|,试求f(x)的单调区间及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}是等差数列,a3,a10是方程x2-3x-5=0的两根,则a5+a8=(  )
A、4B、2C、-3D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是[-1,1]上的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(-
1
2
)=(  )
A、-
1
2
B、-
1
4
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
4x
4x+2

(1)求证:f(x)+f(1-x)=1;
(2)求和f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c (ac≠0),若f(x)<0的解集为(-1,m),则下列说法正确的是(  )
A、f(m-1)<0
B、f(m-1)>0
C、f(m-1)必与m同号
D、f(m-1)必与m异号

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,b∈R,若两集合相等,即{a,
b
a
,1}={a2,a+b,0},则a2014+b2014=(  )
A、1B、-1C、0D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设m=(2
1
4
)
1
2
-(-9.6)0-(3
3
8
)
2
3
+(1.5)-2;n=log3
427
3
+lg25+lg4+7log72.求m+n的值.

查看答案和解析>>

同步练习册答案