精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=(m2m-1)·是幂函数,对任意x1x2∈(0,+∞)且x1x2,满足,若ab∈R且ab>0,ab<0,则f(a)+f(b)的值(  )

A. 恒大于0 B. 恒小于0

C. 等于0 D. 无法判断

【答案】A

【解析】函数f(x)(m2m1) 是幂函数,所以m2m11,解得m2m=-1.

m=2时,f(x)=x2 015

m=-1时,f(x)=x-4.

又因为对任意x1x2(0,+∞)x1x2,满足,所以函数f(x)是增函数,

所以函数的解析式为f(x)=x2 015

函数f(x)=x2 015是奇函数且是增函数,

ab∈Rab>0,ab<0,则ab异号且正数的绝对值较大,所以f(a)+f(b)恒大于0,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,是东西方向的公路北侧的边缘线,某公司准备在上的一点的正北方向的处建设一仓库,设,并在公路北侧建造边长为的正方形无顶中转站(其中上),现从仓库和中转站分别修两条道路,已知,且

(1)求关于的函数解析式,并求出定义域;

(2)如果中转站四堵围墙造价为10万元,两条道路造价为30万元,问:取何值时,该公司建设中转站围墙和两条道路总造价最低.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某几何体挖去一部分后得到的三视图,其中主视图和左视图相同都是一个等腰梯形及它的内切圆,俯视图中有两个边长分别为2和8的正方形且图中的圆与主视图圆大小相等并且圆心为两个正方形的中心.问该几何体的体积是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近于圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精确到小数点后两位)的值为( )(参考数据:sin15°=0.2588,sin75°=0.1305)
A.3.10
B.3.11
C.3.12
D.3.13

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mln(x+1),g(x)= (x>﹣1). (Ⅰ)讨论函数F(x)=f(x)﹣g(x)在(﹣1,+∞)上的单调性;
(Ⅱ)若y=f(x)与y=g(x)的图象有且仅有一条公切线,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的最小值是,且,求的值;

(2)若,且在区间上恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的反函数为,则函数的图象可能是  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

需要

40

30

不需要

160

270

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例。

(2)能否在犯错误的概率不超过百分之一的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具所需成本费用为PP=1 000+5xx2而每套售出的价格为Q其中Q(x)=a (abR),

(1)问:玩具厂生产多少套时使得每套所需成本费用最少?

(2)若生产出的玩具能全部售出且当产量为150套时利润最大此时每套价格为30ab的值.(利润=销售收入-成本).

查看答案和解析>>

同步练习册答案