精英家教网 > 高中数学 > 题目详情
4.已知A、B是半径为R的球O的球面上两点,∠AOB=α,C为球面上的动点,若三棱锥O-ABC的体积最大,则α和最大体积分别为(  )
A.$\frac{π}{3}$,$\frac{1}{6}$R3B.$\frac{π}{3}$,$\frac{1}{3}$R3C.$\frac{π}{2}$,$\frac{1}{3}$R3D.$\frac{π}{2}$,$\frac{1}{6}$R3

分析 由题意,∠AOB=$\frac{π}{2}$,C到平面的距离为R时,三棱锥O-ABC的体积最大.

解答 解:由题意,∠AOB=$\frac{π}{2}$,C到平面的距离为R时,三棱锥O-ABC的体积最大,最大为$\frac{1}{3}•\frac{1}{2}•R•R•R$=$\frac{1}{6}{R}^{3}$.
故选:D.

点评 本题考查球的内接几何体,考查三棱锥的体积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若log2$\sqrt{x}$=1,则x=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若直线l:y=x+b,曲线C:y=$\sqrt{1-{x}^{2}}$.它们有两个不同的公共点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.把函数y=3sin($\frac{1}{2}$x+$\frac{π}{6}$)的图象向右平移φ(φ>0)个单位,所的函数图象关于y轴对称,则φ的最小值为$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.北纬45°圈上有A,B两地,A在东经120°,B在西经150°,设地球的半径为R,则A、B两地的球面距离是$\frac{πR}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0)有相同焦点,它们的公共点在x轴上的射影为其中一个焦点,若它们的离心率分别为e1,e2,则e1•e2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知以直线y=±kx(k>0)为渐近线的双曲线$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{b}^{2}}=1$(a>0,b>0)的离心率为e,且$\frac{1}{k}$和e是方程${x}^{2}+mx+\sqrt{6}=0$的两个根,则该双曲线的渐近线方程为(  )
A.$y=±\frac{\sqrt{2}}{2}x$B.$y=±\sqrt{2}x$C.y=±2xD.y=$±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C的参数方程是$\left\{\begin{array}{l}{x=cosα}\\{y=m+sinα}\end{array}\right.$(α为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{5}}{5}t}\\{y=4+\frac{2\sqrt{5}}{5}t}\end{array}\right.$(t为参数),
(1)求曲线C与直线l的普通方程;
(2)若直线l与曲线C相交于P,Q两点,且|PQ|=$\frac{4\sqrt{5}}{5}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设四边形ABCD为平行四边形,|$\overrightarrow{AB}$|=8,|$\overrightarrow{AD}$|=3,若点M,N满足$\overrightarrow{DM}$=3$\overrightarrow{MC}$,$\overrightarrow{BN}$=2$\overrightarrow{NC}$,则$\overrightarrow{AM}$•$\overrightarrow{MN}$=9.

查看答案和解析>>

同步练习册答案