精英家教网 > 高中数学 > 题目详情
9.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0)有相同焦点,它们的公共点在x轴上的射影为其中一个焦点,若它们的离心率分别为e1,e2,则e1•e2=1.

分析 设F(c,0),把F分别代入椭圆与双曲线方程可得:化为b2(1-$\frac{{c}^{2}}{{a}^{2}}$)=n2($\frac{{c}^{2}}{{m}^{2}}$-1),又c2=m2+n2=a2-b2,可得:$\frac{{b}^{2}}{a}$=$\frac{{n}^{2}}{m}$,设a=km,则b=$\sqrt{k}$n,k=$\frac{{n}^{2}}{{m}^{2}}$+1=$\frac{{c}^{2}}{{m}^{2}}$,即可得出结论.

解答 解:设F(c,0),把F分别代入椭圆与双曲线方程可得:$\frac{{c}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,$\frac{{c}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1
化为b2(1-$\frac{{c}^{2}}{{a}^{2}}$)=n2($\frac{{c}^{2}}{{m}^{2}}$-1),
又c2=m2+n2=a2-b2
可得:$\frac{{b}^{2}}{a}$=$\frac{{n}^{2}}{m}$,
设a=km,则b=$\sqrt{k}$n,∴k=$\frac{{n}^{2}}{{m}^{2}}$+1=$\frac{{c}^{2}}{{m}^{2}}$
∴e1•e2=$\frac{c}{a}•\frac{c}{m}$=$\frac{{c}^{2}}{k{m}^{2}}$=1.
故答案为:1.

点评 本题考查了椭圆与双曲线的标准方程及其性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设f(x)是偶函数,且在[0,+∞)上单调,则满足f(x)=f($\frac{x+3}{x+4}$)的所有x之和为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在数列{an}中,若a1=2,an+1=1-$\frac{1}{{a}_{n}}$,则$\sum_{k=1}^{2014}$ak=$\frac{2015}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,G是△ABC的重心,过G的直线与边AB,AC分别相交于点E,F,若AE=mAB,AF=nAC(mn≠0),求$\frac{1}{m}$+$\frac{1}{n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知A、B是半径为R的球O的球面上两点,∠AOB=α,C为球面上的动点,若三棱锥O-ABC的体积最大,则α和最大体积分别为(  )
A.$\frac{π}{3}$,$\frac{1}{6}$R3B.$\frac{π}{3}$,$\frac{1}{3}$R3C.$\frac{π}{2}$,$\frac{1}{3}$R3D.$\frac{π}{2}$,$\frac{1}{6}$R3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知正项等差数列{an}的公差d为函数f(x)=x3-6x2+9x的两极值点之差,且d,a2+1,13-a3成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足$\frac{{b}_{1}}{{a}_{1}}$+$\frac{{b}_{2}}{{a}_{2}}$+…+$\frac{{b}_{n}}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$,n∈N*,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知100件产品中有10件次品,从中任取3件,则任意取出的3件产品中次品数的均值为0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若实数a,b在区间[0,$\sqrt{2}$]上取值,则函数f(x)=$\frac{2}{3}$ax3+bx2+ax在R上有两个相异极值点的概率是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{2}}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算下列各式的值:
(1)$\root{3}{(-4)^{3}}$-($\frac{1}{2}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4-sin270°+tan15°
(2)log3$\sqrt{27}$+lg25+2lg2+7${\;}^{3lo{g}_{7}2}$+$\frac{lg4+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$.

查看答案和解析>>

同步练习册答案