精英家教网 > 高中数学 > 题目详情
6.若实数a,b在区间[0,$\sqrt{2}$]上取值,则函数f(x)=$\frac{2}{3}$ax3+bx2+ax在R上有两个相异极值点的概率是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{2}}{8}$D.$\frac{1}{2}$

分析 先利用导数求出函数f(x)=ax3+bx2+ax在R上有两个相异极值点的充要条件,得出关于a,b的约束条件,在a-o-b坐标系中画出可行域,再利用几何概型求出两者的面积比即可.

解答 解:函数f(x)=$\frac{2}{3}$ax3+bx2+ax,易得f′(x)=2ax2+2bx+a,
函数f(x)=$\frac{2}{3}$ax3+bx2+ax在R上有两个相异极值点的充要条件:
是a≠0且其导函数的判别式大于0,即a≠0且4b2-8a2>0,
又a,b在区间[0,$\sqrt{2}$]上取值,则 a>0,b>$\sqrt{2}$a,
点(a,b)满足的区域如图中阴影部分所示,
其中正方形区域的面积为3,阴影部分的面积为 $\frac{\sqrt{2}}{2}$,
故所求的概率是 $\frac{\frac{\sqrt{2}}{2}}{\sqrt{2}×\sqrt{2}}$=$\frac{\sqrt{2}}{4}$.
故选:B.

点评 本题主要考查了利用导数研究函数的极值、几何概型.简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是同一平面内的三个向量,其中$\overrightarrow{a}$=(1,2).
(1)若$\overrightarrow{c}$=(-2,k),且$\overrightarrow{c}$∥$\overrightarrow{a}$,求$\overrightarrow{c}$的坐标;
(2)若|$\overrightarrow{b}$|=$\frac{\sqrt{5}}{2}$,且$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$垂直,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0)有相同焦点,它们的公共点在x轴上的射影为其中一个焦点,若它们的离心率分别为e1,e2,则e1•e2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|x2-2px+p2+2p+2=0,x∈R},且A∩R+=∅,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C的参数方程是$\left\{\begin{array}{l}{x=cosα}\\{y=m+sinα}\end{array}\right.$(α为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{5}}{5}t}\\{y=4+\frac{2\sqrt{5}}{5}t}\end{array}\right.$(t为参数),
(1)求曲线C与直线l的普通方程;
(2)若直线l与曲线C相交于P,Q两点,且|PQ|=$\frac{4\sqrt{5}}{5}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)=$\frac{{x-\sqrt{3}}}{{\sqrt{3}x+1}}$,且满足fn(x)=f(fn-1(x)),n∈N*,若f0(x)=f(x),则f2015(0)=(  )
A.0B.$\sqrt{3}$C.$-\sqrt{3}$D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.等差数列-1,4,…的前10项之和为215.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设i是虚数单位,则复数$\frac{(1+i)^{2}}{1-i}$=(  )
A.1+iB.1-iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图在平行四边形ABCD中,已知AB=8,AD=5,$\overrightarrow{CP}$=3$\overrightarrow{PD}$,$\overrightarrow{AP}$•$\overrightarrow{BP}$=2,则$\overrightarrow{AB}$•$\overrightarrow{AD}$的值是(  )
A.18B.20C.22D.24

查看答案和解析>>

同步练习册答案